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https://davidwees.com/sites/default/files/Travelling%20Salesman%20Problem%20-%20Sample.docx
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Motivation

Optimization problems 
are very general:
Find the configuration of a system or process 
which minimizes the associated “cost”  

https://www.automation.com/library/resources/automation-cartoons-january-28-2009

1

Optimization problems 
can be hard to solve:
If costs are random, also the optimal configuration 
looks random, and thus, is hard to find 
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Nature solves optimization 
problems all the time:
Minimizing energy, maximizing entropy

3



  

Different strategies:

Simulate Nature!
Mimic the laws of Nature which govern the 
dynamics during cooling!
Cooling a physical system = dynamical evolution 
towards configurations with lower energies.
Cooling of an optimization problem = dynamical 
evolution towards configurations with lower cost 
functions.

1

Let Nature simulate!
Build a system which mimics the optimization 
problem, and, by the laws of physics, let it cool!
Configuration space of the system must map to 
the configuration space of the problem, with 
energies corresponding to the cost function of the 
problem (“Problem Hamiltonian”).
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http://www.math.uwaterloo.ca/tsp/
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Cooling can be classical or quantum!

Thermal fluctuations
● controlled by a temperature
● dynamics governed by master equation

Quantum fluctuations
● controlled by a quantum (i.e. non-

commuting) field
● Dynamics governed by Schroedinger 

equation

https://www.automation.com/library/resources/automation-cartoons-january-28-2009


  

J. Brooke, D. Bitko, T. F. Rosenbaum, G. Aeppli, Science 284, 779 (1999)

Classical vs. quantum cooling



  

J. Brooke, D. Bitko, T. F. Rosenbaum, G. Aeppli, Science 284, 779 (1999)

Classical vs. quantum cooling

Simulated cooling:



  

Standard Quantum Annealing Protocol

● How to choose 
the Hamiltonian?

● General form of time-dependent 
Hamiltonian:



  

Example: Exact Cover
A problem instance for N bits {z1,...,zN} is defined by M clauses Cijk.
Each clause shall select three bits {zi,zj,zk}, and demand zi+zj+zk=2.

Decision problem:
Is there a bit assignment which satisfies all clauses simultaneously?

Formulation of the problem as an Ising model:

Is the ground state energy E=0 or E>0 ?

Exponentially many
satisfying assignments No satisfying 

assignment
EASY EASYHARD

satisfiable

not
satisfiable



  

Programmable quantum systems:

Initial state preparation

Time-dependent control

Detection of final state

Engineering of Ising Hamiltonians
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Trapped ions: 
● routinely used as quantum simulators of spin chains

[Monroe group in Maryland, Blatt group in Innsbruck]
● tunable phonon-mediated Ising interactions
● complicated (i.e. quasi-random) interactions can occur quite naturally, 

and directly represent a number partitioning problem 

TG, D. Raventos, B. Julia-Diaz, C. Gogolin, M. Lewenstein,  Nat. Commun. 7 11524 (2016)



  

The bottleneck of quantum annealing

System undergoes a first-order phase transition: Δ becomes exponentially small!

Adiabatic condition:  Annealing has to be slow compared to inverse gap!

Example: Landau-Zener problem

0
.2

 "

Numerical studies: T. Joerg, F. Krzakala, J. Kurchan, A.C. Maggs, Phys. Rev. Lett. 101, 147204 (2008)



  

How to avoid small gaps?
● Inhomogeneous driving:

Standard protocol:

Modified protocol:

[E. Farhi, J. Goldstone, D. Gosset, S. Gutmann, H. Meyer, P. Shor, Quant. Inf. Comp. 11, 181 (2011)]

● Non-stoquastic driver Hamiltonian:

Stoquastic: No sign problem. All off-diagonal elements (in z-basis) are positive (e.g. transverse Ising) 

Introducing terms which render the Hamiltonian non-stoquastic can turn 1st order phase transitions 
to 2nd order transitions:

Example:

[H. Nishimori and K. Takada Front. ICT 4:2 (2017)]
[L. Hormozi, E. W. Brown, G. Carleo, and M. Troyer, Phys. Rev. B 95, 184416 (2017)
[I. Ozfidan et al., arXiv 1903.06139]

● Thermal assisted quantum annealing:
[N. Dickson et al., Nat. Commun. 4, 1903 (2013)]



  

Hybrid algorithms
Combining quantum and classical search 
strategies

N. Chancellor, New J. Phys. 19 023024 (2017)

T. Grass and M. Lewenstein, Phys. Rev. A 95, 052309 
(2017)

Preparation of a
selected configuration 

Evolution within a 
quantum field

Projective 
measurement

Comparison of old and 
new configuration

Selection of 
configuration

Performance of different search 
strategies, tested with random 
energy model of 11 spins



  

Reverse annealing
Annealing starts with classical 
configuration, the quantum 
fluctuations are then switched on 
and off

Adiabatic versions:

[Perdomo-Ortiz, A., Venegas-Andraca, 
S.E. & Aspuru-Guzik, A. Quantum Inf 
Process 10, 33 (2011)]

Non-adiabatic versions:

[D-wave white paper series 14-1018A-A 
(2017)]



  

Annealing with bias field

General form or Hamiltonian as in standard 
annealing:

But the driver Hamiltonian shall not be 
agnostic to the problem.

Standard initial state

Biased initial state

Target  
state

T. Grass, Phys. Rev. Lett. 123, 052309 (2019)



  

How to implement the bias?

Add longitudinal field component to the driver Hamiltonian:

The biased initial state is 

● still an easy-to-prepare ground state of the driver Hamiltonian
● still a superposition of all z-polarized states (with non-equal 

weights)

If the driver Hamiltonian is adiabatically switched off, the ground 
state of the problem Hamiltonian will be reached.

When does the longitudinal field enhance “adiabaticity”? 

T. Grass, Phys. Rev. Lett. 123, 052309 (2019)



  

Success rates with and without bias
For randomly generated instances of the Exact Cover 3 problem 
(with unique satisfying assignment), the annealing outcome for 
fixed annealing times is obtained (through numerical simulation of 
the dynamics).

Bias fields are generated randomly with fixed Hamming distance 
to the optimal solution.

Optimal solution: 

Bias configuration:

Hamming distance:

Success rate: 

T. Grass, Phys. Rev. Lett. 123, 052309 (2019)



  

Iterative scheme
First run: Unbiased quantum annealing.
Next runs: Biased annealing, bias defined from previous outcome.
Stop condition: Input and outcome coincide.

T. Grass, Phys. Rev. Lett. 123, 052309 (2019)



  

Iterative “anti”-bias scheme
● Iterative bias scheme fails for the hardest instances
● Anti-bias scheme: apply bias which is anti-aligned with previous 

outcomes (accumulatively)
● New runs will be biased away from the previous (wrong) outcomes, thus 

have higher likelihood to find the correct solution
● Stop when a state with E=0 is measured 

T. Grass, Phys. Rev. Lett. 123, 052309 (2019)



  

Concluding Remarks
● Quantum Annealing: solve optimization problem by implementing them 

in a physical system.
● Quantum “cooling” process: adiabatic evolution from an easy-to-prepare 

ground state with many quantum fluctuations to problem ground state.
● Bottleneck: small gaps along the annealing path.
● Possible solutions:

 Inhomogeneous fields
 Non-stoquastic driver Hamiltonian
 Hybrid approaches (thermal/classical + quantum cooling)
 Reverse Annealing
 Biased Annealing:

 Longitudinal fields in the driver Hamiltonian favor configurations 
which are “similar” to this bias.

 Good bias =>, significantly enhanced success probability.
 Iteratively generated bias: for the hardest instances it typically 

favors only a sub-optimal solution.
 Anti-bias fields can push the system away from wrong states.

Thank you!
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