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P: Decision problems solvable on a deterministic 
computer in polynomial time

NP-complete: “Hardest” problems in NP (to which any 
NP problem can be mapped in polynomial time)

NP: Decision problems which can be solved on a non-
deterministic computer (or whose positive answer can be 

verified on a deterministic computer) in polynomial time

NP-hard: Problems at least as hard as NP-complete 
problems, but not necessarily in NP
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NP-complete problems

Spin glasses

Spin models with random couplings

Number partitioning

Traveling salesman problem
   
   World record:
   85,900 connections on a computer chip
     computation time: 136 CPU yrs.
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Trapped ions spin models

Rabi frequency (at ion i)

Lamb-Dicke parameter (ion i to mode m)

laser beatnote frequency

(transverse)

Phonons

(in interaction picture after 
rotating wave approximation)

Spin-phonon coupling



Trapped ions spin models

Effective Hamiltonian:

- antiferromagnetic
- power-law decay

- mixed signs
- glassy

Spin-phonon coupling

Ising-like model with controllable long-range coupling:

Rabi frequency (at ion i)

Lamb-Dicke parameter 

laser beatnote frequency



Energy is cost function of number 
partitioning problem:

Near resonance: Mattis model

At l-th phonon resonance:

Two-fold degenerate ground state 
defined by the mode pattern: 

GS1= GS2=

GS1= GS2=

GS1= GS2=

GS1= GS2=

factorizes:

MinusMinus: Ferromagnetic coupling PlusPlus: Antiferromagnetic coupling
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Energy is cost function of number 
partitioning problem:

Near resonance: Mattis model

At l-th phonon resonance:

Two-fold degenerate ground state 
defined by the mode pattern: 

GS1= GS2=

GS1= GS2=

GS1= GS2=

GS1= GS2=

factorizes:

MinusMinus: Ferromagnetic coupling PlusPlus: Antiferromagnetic coupling

ground states due to 
parity symmetry

→ Number partitioning is trivial.
→ Problem becomes hard if degeneracy is lifted.
→ Off-resonant modes select unique ground state.

Solution via quantum annealing? 
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Phase diagram

From classical to quantum

Classical Hamiltonian Quantum Hamiltonian

Spin glass 
or 

“ferromagnet”

Quantum spin glass
 or “ferromagnet” 

or paramagnet

Quantum fluctuations due to transverse field

DynamicsQuantum annealing:
Dynamics in a slowly decaying 
transverse field



“Phase diagram”

Useful thermal averages:

(should be calculated for
 in the presence of a Z

2
 breaking field) 

Magnetic susceptibility:

(small longitudinal field h plus Z
2
 breaking field) 

System properties upon varying 
detuning and transverse field for N=6:



Quantum annealing

System properties upon varying 
detuning and transverse field for N=6:

Using Krylov methods we 
simulate dynamics in a time-
dependent Hamiltonian for 6 
spins and including the 
phonons:

Spin-phonon coupling:

Decaying transverse field:

Difficult instance

Easy instance



Exact dynamics (6 ions)

(a,b)
(c)

COM mode

bending mode

rotating mode

Local magne-
tization vs time:

(a,b) glassy target state
(c) ferromagnetic target state

For all instances, 
the correct sign 
(defined by pattern 
of the rotating 
mode) is produced 
during the 
annealling



Semiclassical approximation

Heisenberg equations 
of motion:

Mean-field decoupling:

Scaling up to 22 ions:
Polynomial increase
of annealing time:



Summary
                [T. Grass et al., Nat. Commun. 7 11524 (2016)]

→ Ion chains can naturally incorporate spin glass physics.

→ Setup directly relates to (NP-hard) number partitioning problem.

→ Feasibility of quantum annealing shown for small system
   (6 spins plus phonons) using exact diagonalization.

→ Scales well within a semiclassical approximation:
    Polynomial increase of annealing time. 
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