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Quantum Hall Systems

[Thouless, Kohmoto, Nightingale, den Nijs, PRL (1982)]

[von Klitzing, Dorda, Pepper, PRL (1980)]

2016

1985

© Royal Society

Robust transport property:
quantized Hall resistance

Magnetic field defines topology→ chiral 
motion leads to robust edge transport

Kubo formula:Topological invariant from band curvature:



Anyons and non-Abelions

● Topological band structure (in 1d or 2d) + interactions:
→ Emergence of exotic quasiparticle (“anyons”)

In 3d:

Double Exchange = Identity
      Bosons or Fermions

In 2d:

Double Exchange non-trivial
        Anyons

● If anyonic states are degenerate, exchange corresponds to 
rotations within the degenerate space non-Abelion anyons

[Leinaas & Myrheim, Il Nuovo Cimento B (1977)] [Nayak, Simon, Stern, Freedman, Das Sarma, RMP (2008)]



Fractional Quantum Hall Effect

● Hall conductance                  quantized to fractional values:

 Tsui, Stoermer, Laughlin

Integer Quantum Hall Effect

Fractional Quantum Hall Effect

● Interactions can yield strongly 
anticorrelated and  gapped states 
Examples: Laughlin state, Pfaffian state, …

● Bulk excitations (e.g. quasiholes) 
behave like anyons

● Goal: experimental demonstration

1998

[Julia-Diaz, TG, Barberan, Lewenstein, 
New J. Phys. 14, 055003 (2012)]

In general:                 (Landau level filling)
                → integer filling: HUGE single-particle gap
                → fractional filling: NO single-particle gap



Outline of the talk
● Fractional Quantum Hall physics in synthetic matter:

➔ Engineering of Hamiltonian
Synthetic gauge fields

➔ Preparation of ground state 
Adiabatic scheme

➔ Reward of these efforts: 
● enhanced detection opportunities (anyon detection)
● engineering of exotic phases (fractional Wigner crystal)

● Fractional Quantum Hall physics in electronic matter:

➔ Monolayer graphene in B field:
Laughlin state

➔ Optical driving: 
synthetic bilayer structure

➔ Reward:
non-Abelian Fibonacci anyons
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Synthetic gauge fields

● Mimic effect of magnetic field in charge-neutral systems:
                                                                  ( cold atoms, photons, etc.)

 Optical techniques

 Mechanical techniques

● Single-particle physics: edge states, Chern numbers
                                          Hofstadter butterfly, …

● Many-body physics:      would/could support anyons, 
                                          but little explored yet!

Optomechanical lattices:    [Schmidt,…,Marquardt, Optica (2015)]
Lattice shaking:                               [Struck,…,Sengstock, PRL (2012)]
Rotating gases:                             [Matthews, …, Cornell, PRL (1999)]
                                                            [Madison,…, Dalibard, PRL (2000)]
                                                [Abo-Shaeer,…, Ketterle, Science (2001)]
Rotating lattices:                     [Gemelke, Sarajlic, Chu, arXiv, (2010)]
Twisted cavities:                                  [Clark,…,Simon, Nature (2020)]

Cold atoms in trap:                          [Lin,…, Spielman, Nature (2009)]
Cold atoms in lattice:                [Aidelsburger,…, Bloch, PRL (2013)]
                                                               [Miyake,…,Ketterle, PRL (2013)]
Coupled resonators:                  [Hafezi …,Taylor, Nat. Phys. (2011)]
Modulated SC qubits:    [Roushan, …, Martinis, Nat. Phys. (2016)]
Modulated ions:                          [TG, …, Lewenstein, PRA (2018)]



Preparation of atomic Laughlin droplet

● Ingredients:     -  Interactions                              (Contact interaction)
                          -  Synthetic gauge fields             (Rotation)

● But:
               having the Hamiltonian                  having the state        

● Way to Laughlin state:

Rotation  produces Landau levels spectrum

Rotating faster flattens the Landau levels

Repulsive interactions in a flat band: strongly 
anticorrelated ground states (vortices, vortex 

lattices, FQH states)
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Behavior of 
N=4 bosons 
with contact 
repulsion 
(g=1)

Vortex

Laughlin

[Popp, Paredes, Cirac, PRA (2004)]
[Dagnino, Barberan, Lewenstein, Dalibard, Nat. Phys. (2009)]
[Andrade, Kasper, Lewenstein, Weitenberg, TG, arXiv  2009.08943]



Preparation of atomic Laughlin droplet

● Ingredients:     -  Interactions                              (Contact interaction)
                          -  Synthetic gauge fields             (Rotation)

● But:
               having the Hamiltonian                  having the state        

● Way to Laughlin: Adiabatic path via anisotropy-induced gaps 

[Popp, Paredes, Cirac, PRA (2004)]
[Dagnino, Barberan, Lewenstein, Dalibard, Nat. Phys. (2009)]
[Andrade, Kasper, Lewenstein, Weitenberg, TG, arXiv  2009.08943]
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Synthetic FQH matter: opportunities
● Fractional Quantum Hall physics in synthetic matter:

➔ Engineering of Hamiltonian
Synthetic gauge fields

➔ Preparation of ground state 
Adiabatic scheme

➔ Reward of these efforts: 
● enhanced detection opportunities (anyon detection)
● engineering of exotic phases (fractional Wigner crystal)

● Fractional Quantum Hall physics in electronic matter:

➔ Monolayer graphene in B field:
Laughlin state

➔ Optical driving: 
synthetic bilayer structure

➔ Reward:
non-Abelian Fibonacci anyons
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Impurities for anyon detection
Probe system with impurity particles 
binding to anyonic quasiholes

[TG, Julia-Diaz, Baldelli, Bhattacharya, Lewenstein, Phys. Rev. Lett. 125, 136801 (2020)]

[Zhang, Sreejith, Gemelke, Jain, PRL (2014)]
[Lundholm and Rougerie, PRL  (2016)]

[Grusdt, ..., Demler, Nat. Commun. (2016)]
[Yakaboylu and Lemeshko, PRB, (2018)]

● Screening of magnetic field due to the liquid:

● Effective Landau level wave functions for the impurities:
  with average angular momentum:

in contrast to the original wave functions 

  with angular momentum:

● Can we use impurity angular momentum to trace anyon 
behavior?



Impurities in Abelian liquids
For multiple impurities, the angular momentum reflects the 
filling of the single-particle levels:

[TG, Julia-Diaz, Baldelli, Bhattacharya, Lewenstein, Phys. Rev. Lett. 125, 136801 (2020)]

with statistical parameter α

Detection of α: 

No braiding or 
interference 
needed, only 

density 
measurement!

Fermi sea: Bose condensate: Anyon gas:



Impurities in non-Abelian liquids
Hallmarks of non-Abelian liquids:

● Quasihole states are degenerate.
● Sensitivity of braiding phase to the parity of the number of 

particles in the liquid:

Statistical phase in Pfaffian liquid:

Even-odd effect of impurity
angular momentum:

[Baldelli, Julia-Diaz, Bhattacharya, 
Lewenstein, TG, arXiv  2102.02072]

[Macaluso, Comparin, Mazza, and Carusotto, PRL (2019)]
[Bonderson, Gurarie, Nayak, PRB (2011)]



Synthetic FQH matter: opportunities
● Fractional Quantum Hall physics in synthetic matter:

➔ Engineering of Hamiltonian
Synthetic gauge fields

➔ Preparation of ground state 
Adiabatic scheme

➔ Reward of these efforts: 
● enhanced detection opportunities (anyon detection)
● engineering of exotic phases (fractional Wigner crystal)

● Fractional Quantum Hall physics in electronic matter:

➔ Monolayer graphene in B field:
Laughlin state

➔ Optical driving: 
synthetic bilayer structure

➔ Reward:
non-Abelian Fibonacci anyons

Alexey Gorshkov
(JQI)

Przemek 
Bienias (JQI)

Rex Lundgren 
(JQI)

Michael 
Gullans 
(Princeton)

Joseph 
Maciejko 
(Alberta)



Synthetic FQH matter: opportunities
● Interparticle interactions tunable via Rydberg dressing.
● Transition of Laughlin liquid into symmetry-broken phases:

[TG, Bienias, Lundgren, Gullans, Maciejko, Gorshkov,  Phys. Rev. Lett. 121, 253403 (2018)]

● Fractional Wigner crystal: Exotic combination of topological order 
and symmetry-broken order? [Xia, Eisenstein, Pfeiffer, West, Nat. Phys. (2011)] 

[Samkharadze, ..., Fradkin, Csáthy, Nat. Phys (2016)]



Electronic FQH matter
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Optical driving in graphene

[Ghazaryan, TG, Gullans, Ghaemi, Hafezi,  Phys. Rev. Lett. 119, 247403 (2017)]

  “chemical potential”    “interlayer tunneling” 

In quantum Hall regime:  Optically coupled 
Landau levels form synthetic bilayer.

Optical engineering of electronic Hamiltonians:
 - Floquet topological insulator in graphene
 -  Breaking of time-reversal symmetry 
     through circularly polarized or twisted light

 

[Oka & Aoki, PRB (2009)]
[McIver, …, Cavalleri, Nat. Phys. (2020)]

[Bhattacharya, Chaudhary, TG, 
Lewenstein arXiv:2006.10688]



Exotic interactions and Fibonacci phase

● Synthetic bilayer interactions: non-monotonic 
behavior favoring singlets at m=0

Synthetic bilayer  exhibits exotic structure of Haldane pseudopotentials: 

● Normal bilayer:  Monotonic decay.

[Cian, TG, Vaezi, Liu, Hafezi, Phys. Rev. B 102, 085430 (2020)]
[Ghazaryan, TG, Gullans, Ghaemi, Hafezi,  Phys. Rev. Lett. 119, 247403 (2017)]



Exotic interactions and Fibonacci phase

● Synthetic bilayer interactions: non-monotonic 
behavior favoring singlets at m=0

Synthetic bilayer  exhibits exotic structure of Haldane pseudopotentials: 

● Normal bilayer:  Monotonic decay.

Adiabatic connection 
to parent Hamiltonian

→ Synthetic bilayer supports non-Abelian Fibonacci phase.

(candidate for universal topological quantum computing)

Mohammad 
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Ze-Pei Cian
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Areg Ghazaryan 
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Pouyan 
Ghaemi (CUNY)

Abolhassan Vaezi 
(Tehran)

Zhao Liu 
(Zhejiang)

[Cian, TG, Vaezi, Liu, Hafezi, Phys. Rev. B 102, 085430 (2020)]
[Ghazaryan, TG, Gullans, Ghaemi, Hafezi,  Phys. Rev. Lett. 119, 247403 (2017)]
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Designer Quantum Matter
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Research lines

 Floquet Engineering of 
Many-Body Phases

 Non-linear optics and strongly 
correlated matter

 Quantum Algorithms and 
Machine Learning

 Topological Codes

New Quantum 
Simulation 
Platorms

Quantum 
Materials “on 

demand”

Detection of 

Topological 

Properties

Sofware for 
Quantum 

Computers

CONDENSED MATTER 
THEORY MEETS 

QUANTUM OPTICS

QUANTUM 
INFORMATION



List of Topics
 Floquet Engineering of Many-Body Phases:

➔ Optical dressing: tunable 
interactions for electrons

➔ N-body interactions?
➔ The heating challenge: Tailoring thermalization channels?
➔ More structure using structured light: electronic quantum simulators?

 Non-linear optics and strongly correlated matter:
➔ High-harmonic spectra

from topological matter
➔ Exciton-polaritons in topological

matter and topological matter
out of exciton-polaritons

 Quantum Algorithms:
➔ Digital gate preparation of topological states
➔ Checks and cheats for adiabatic quantum computers 
➔ Understand computational complexity using machine learning



Floquet Engineering of Many-Body Phases

[Seetharam et al., Phys. Rev. X 5, 041050 (2015)]

[D’Alessio & Rigol, Phys. Rev. X 4, 041048 (2014)]

 Tunable Interactions:
➔ Coupled Landau levels yields synthetic 

bilayer with exotic interactions - depending 
on coupled levels 
[Ghazaryan, TG, Gullans, Ghaemi, Hafezi,  Phys. Rev. Lett. 119, 
247403 (2017)]

➔ Develop systematic coupling scheme 
(various LLs , pulse shaping, etc.) for 
interactions “on demand”

➔ LL mixing leads to effective N-body 
interactions
 [Sodemann & MacDonald, Phys. Rev. B 87, 245425 (2013)]

Even weak terms are relevant in some 
systems (e.g. 5/2 state)
[Pakrouski, Peterson,  Jolicoeur, Scarola, Nayak, Troyer, Phys. 
Rev. X 5, 021004 (2015)]

 Heating is bottleneck of Floquet 
engineering. Include thermalization!
➔ Simulate open system dynamics (e.g. 

quantum jump method)
 Further topics: SSH model, twisted 

bilayer, twisted light,... 
Topology in topology: Coupled 
Landau levels form SSH chain.
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Non-linear Optics meets Correlated Matter

[S. Ravets et al., Phys. Rev. Lett. 120, 057401 (2018)]
[TG, Cotlet, İmamoğlu, Hafezi, Phys. Rev. B 101, 155127 (2020)]

[Kwon et al., Phys. Rev. Lett. 122, 045302 (2019)]
[Sanvitto et al., Nat. Phys. 6, 527 (2010)]

[Lackner, …, Hoefling, Schneider, arXiv 2102.09565]

 High-harmonic generation
➔ Well established in atomic systems, 

getting “popular” also in condensed 
matter 
[Ghimire and Reis, Nat. Phys. 15, 10 (2019)]

➔ Detection of topology via HHG 
[A. Chacon et al., Phys. Rev. B 102, 134115 (2020)]

➔ Signatures of anyons?
➔ Kitaev chain (quadratic model)
➔ Interacting models

➔ Signature of superconductivity?
➔ HHG spectra of cuprates
➔ Light-induced superconductivity

 Excitonic systems
➔ Exciton-polaritons in FQH systems – 

theoretical model for interactions?
➔ Excitons bound to quasiparticles: 

Anyon detection via impurities?
➔ Many-body phases of excitons: strong 

interactions, artificial gauge fields,…?
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Quantum Algorithms
 Quantum Annealing

➔ Bottleneck: Closing of gap 
[Altshuler, Krovi, Roland, PNAS 107 12446 (2010)]

➔ Bias field can lead to significant improvements
[TG, Phys. Rev. Lett. 123, 120501 (2019)]

➔ Dynamical phase transitions:  Hints for critical
field strength through quench experiments?

➔ Reinforcement learning?
[Bukov et al., Phys. Rev. X 8, 031086 (2018)]
[Foesel et al., Phys. Rev. X 8, 031084 (2018)]

 Understanding computational complexity
➔ Phase transitions of computational complexity 

[Mertens, Phys. Rev. Lett. 81, 4281 (1998)]

➔ Expectation: There are more subtle patterns which 
characterize the hard instances

➔ Idea: Use machine learning to identify them.

➔ Gate preparation of topological qubits
[J. I. Latorre, V. Picó, and A. Riera Phys. Rev. A 81, 060309 (2010)]
[Rahmani et al. PRX QUANTUM 1, 020309 (2020)]



My group

 Currently:              2 PhD students              1 Post-Doc

 Next steps: 

 Local students?
 New hires?
 Funding? 

 Network:

Nicollo Baldelli 
since 2019 Barbara Andrade 

since 2020

Bernhard Irsigler 
since 2021

Lewenstein, Chang, Biegert, Bachtold, Tarruell, Wall…
Julia-Diaz, Barberan, Celi, ...

Hafezi, Gorshkov, 
Solomon, Davoudi,...

Weitenberg, Sengstock Pagano Imamoglu
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