Max-Planck Institute for the Science of Light 11.03.2021 Seminar Talk

Topological states in real and synthetic quantum matter

Tobias Grass

Topology and symmetry

Topology and symmetry

Quantum Hall Systems

Robust transport property: quantized Hall resistance

Magnetic field defines topology→ chiral motion leads to robust edge transport

[von Klitzing, Dorda, Pepper, PRL (1980)]

Topological invariant from band curvature:

Kubo formula:

2016

[Thouless, Kohmoto, Nightingale, den Nijs, PRL (1982)]

Anyons and non-Abelions

Topological band structure (in 1d or 2d) + interactions:
 → Emergence of exotic quasiparticle ("anyons")

 If anyonic states are degenerate, exchange corresponds to rotations within the degenerate space
 non-Abelion anyons

[Leinaas & Myrheim, Il Nuovo Cimento B (1977)] [Nayak, Simon, Stern, Freedman, Das Sarma, RMP (2008)]

Fractional Quantum Hall Effect

Tsui, Stoermer, Laughlin

1998

• Hall conductance $\sigma_{\rm H} = \frac{e^2}{h}C$ quantized to fractional values:

 $C = n \Rightarrow$ Integer Quantum Hall Effect

 $n, p, q \in \mathbb{N}$

 $C = \frac{p}{q} \Rightarrow$ Fractional Quantum Hall Effect

In general: $C = \nu$ (Landau level filling)

- \rightarrow integer filling: HUGE single-particle gap
- \rightarrow fractional filling: NO single-particle gap
- Interactions can yield strongly anticorrelated and gapped states
 Examples: Laughlin state, Pfaffian state, ...
- Bulk excitations (e.g. quasiholes) behave like anyons
- Goal: experimental demonstration

Outline of the talk

- Fractional Quantum Hall physics in synthetic matter:
 - → Engineering of Hamiltonian

Synthetic gauge fields

- → Preparation of ground state Adiabatic scheme
- → Reward of these efforts:
 - enhanced detection opportunities (anyon detection)
 - engineering of exotic phases (fractional Wigner crystal)
- Fractional Quantum Hall physics in electronic matter:
 - Monolayer graphene in B field:

Laughlin state

→ Optical driving:

synthetic bilayer structure

→ Reward:

non-Abelian Fibonacci anyons

Synthetic FQH matter: preparation

- Fractional Quantum Hall physics in synthetic matter:
 - → Engineering of Hamiltonian

Synthetic gauge fields

→ Preparation of ground state Adiabatic scheme

- Reward of these efforts:
 - enhanced detection opportunities (anyon detection)
 - engineering of exotic phases (fractional Wigner crystal)
- Fractional Quantum Hall physics in electronic matter:
 - Monolayer graphene in B field:

Laughlin state

Optical driving:

synthetic bilayer structure

→ Reward:

non-Abelian Fibonacci anyons

Synthetic gauge fields

Mimic effect of magnetic field in charge-neutral systems:

(cold atoms, photons, etc.)

- [Lin,..., Spielman, Nature (2009)] **Cold atoms in trap:** Optical techniques Cold atoms in lattice: [Aidelsburger,..., Bloch, PRL (2013)] [Miyake,...,Ketterle, PRL (2013)] **Coupled resonators:** [Hafezi ...,Taylor, Nat. Phys. (2011)] [Roushan, ..., Martinis, Nat. Phys. (2016)] **Modulated SC gubits:** Modulated ions: [TG, ..., Lewenstein, PRA (2018)] **Optomechanical lattices:** [Schmidt,...,Marguardt, Optica (2015)] Mechanical techniques Lattice shaking: [Struck,...,Sengstock, PRL (2012)]
 - **Rotating gases:**
- [Matthews, ..., Cornell, PRL (1999)] [Madison,..., Dalibard, PRL (2000)] [Abo-Shaeer,..., Ketterle, Science (2001)] [Gemelke, Sarajlic, Chu, arXiv, (2010)] [Clark,...,Simon, Nature (2020)]

Rotating lattices: Twisted cavities:

- Single-particle physics: edge states, Chern numbers Hofstadter butterfly, ...
- Many-body physics:

would/could support anyons, but little explored yet!

Preparation of atomic Laughlin droplet

Ingredients: - Interactions
 Synthetic gauge fields

(Contact interaction) (Rotation)

• But: having the Hamiltonian \neq having the state

• Way to Laughlin state:

Rotation produces Landau levels spectrum $E_{nm} = \hbar \left[(\Omega + \omega)n + (\Omega - \omega)m \right] + \text{const.}$ $N_{\infty} N_{\infty} N_{0}$ Rotating faster flattens the Landau levels
Repulsive interactions in a flat band: strongly

Repulsive interactions in a flat band: strongly anticorrelated ground states (vortices, vortex lattices, FQH states)

[Popp, Paredes, Cirac, PRA (2004)] [Dagnino, Barberan, Lewenstein, Dalibard, Nat. Phys. (2009)] [Andrade, Kasper, Lewenstein, Weitenberg, TG, arXiv 2009.08943]

Behavior of N=4 bosons with contact repulsion (g=1)

Preparation of atomic Laughlin droplet

Ingredients: - Interactions
 Synthetic gauge fields

(Contact interaction) (Rotation)

- Way to Laughlin: Adiabatic path via anisotropy-induced gaps

[Andrade, Kasper, Lewenstein, Weitenberg, TG, arXiv 2009.08943]

Barbara Andrade (ICFO)

Valentin Kasper (ICFO)

Christof Weitenberg (Uni Hamburg)

Maciej Lewenstein (ICFO)

Synthetic FQH matter: opportunities

- Fractional Quantum Hall physics in synthetic matter:
 - >Engineering of Hamiltonian

Synthetic gauge fields

- Preparation of ground state
 Adiabatic scheme
- → Reward of these efforts:
 - enhanced detection opportunities (anyon detection)
 - engineering of exotic phases (fractional Wigner crystal)

Bruno Julia-Diaz (U Barcelona)

Utso Bhattarcharya (ICFO)

Fractional Quantum Hall physics in electronic matter:

Maciej Lewenstein (ICFO)

Monolayer graphene in B field:

Laughlin state

→ Optical driving:

synthetic bilayer structure

→ Reward:

non-Abelian Fibonacci anyons

Impurities for anyon detection

Probe system with impurity particles binding to anyonic quasiholes

[Zhang, Sreejith, Gemelke, Jain, PRL (2014)] [Lundholm and Rougerie, PRL (2016)] [Grusdt, ..., Demler, Nat. Commun. (2016)] [Yakaboylu and Lemeshko, PRB, (2018)]

• Screening of magnetic field due to the liquid:

$$B^* = B(1-\nu) \Rightarrow l_B^* = l_B/\sqrt{1-\nu}$$

• Effective Landau level wave functions for the impurities: $\tilde{\varphi}_m(w) \sim w^m \exp\left[-(1-\nu)\frac{|w|^2}{4l_B^2}\right]$ with average angular momentum: $L_m = \frac{m+\nu}{1-\nu}$

in contrast to the original wave functions

$$\varphi_m(w) \sim w^m \exp\left[-\frac{|w|^2}{4l_B^2}
ight]$$
 with angular momentum: $L_m = m$

 Can we use impurity angular momentum to trace anyon behavior?

[TG, Julia-Diaz, Baldelli, Bhattacharya, Lewenstein, Phys. Rev. Lett. 125, 136801 (2020)]

Impurities in Abelian liquids

For multiple impurities, the angular momentum reflects the filling of the single-particle levels:

[TG, Julia-Diaz, Baldelli, Bhattacharya, Lewenstein, Phys. Rev. Lett. 125, 136801 (2020)]

Impurities in non-Abelian liquids

Hallmarks of non-Abelian liquids:

- Quasihole states are degenerate.
- Sensitivity of braiding phase to the parity of the number of particles in the liquid:

Statistical phase in Pfaffian liquid:

$$\alpha = \frac{\nu}{4} - \frac{1}{8} + \frac{P}{2}$$

[Macaluso, Comparin, Mazza, and Carusotto, PRL (2019)] [Bonderson, Gurarie, Nayak, PRB (2011)]

Even-odd effect of impurity angular momentum:

[Baldelli, Julia-Diaz, Bhattacharya, Lewenstein, TG, arXiv 2102.02072]

Synthetic FQH matter: opportunities

• Fractional Quantum Hall physics in synthetic matter:

Engineering of Hamiltonian

Synthetic gauge fields

→ Preparation of ground state (JQI)

Adiabatic scheme

- Reward of these efforts:
 - enhanced detection opportunities (anyon detection)
 - engineering of exotic phases (fractional Wigner crystal)
- Fractional Quantum Hall physics in electronic matter:
 - Monolayer graphene in B field:

Laughlin state

Optical driving:

synthetic bilayer structure

→ Reward:

non-Abelian Fibonacci anyons

Bienias (JOI)

(JQI)

en Michael Gullans (Princeton)

Joseph Maciejko on) (Alberta)

Synthetic FQH matter: opportunities

- Interparticle interactions tunable via Rydberg dressing.
- Transition of Laughlin liquid into symmetry-broken phases:

[TG, Bienias, Lundgren, Gullans, Maciejko, Gorshkov, Phys. Rev. Lett. 121, 253403 (2018)]

• Fractional Wigner crystal: Exotic combination of topological order and symmetry-broken order? [Xia, Eisenstein, Pfeiffer, West, Nat. Phys. (2011)] [Samkharadze, ..., Fradkin, Csáthy, Nat. Phys (2016)]

Electronic FQH matter

- Fractional Quantum Hall physics in synthetic matter:
 - Engineering of Hamiltonian

Synthetic gauge fields

- Preparation of ground state
 Adiabatic scheme
- Reward of these efforts:
 - enhanced detection opportunities (anyon detection)
 - engineering of exotic phases (fractional Wigner crystal)
- Fractional Quantum Hall physics in electronic matter:
 - Monolayer graphene in B field:

Laughlin state

→ Optical driving:

synthetic bilayer structure

→ Reward:

non-Abelian Fibonacci anyons

Optical driving in graphene

Optical engineering of electronic Hamiltonians:

- Floquet topological insulator in graphene
- Breaking of time-reversal symmetry through circularly polarized or twisted light

[Oka & Aoki, PRB (2009)] [McIver, ..., Cavalleri, Nat. Phys. (2020)] [Bhattacharya, Chaudhary, TG, Lewenstein arXiv:2006.10688]

Exotic interactions and Fibonacci phase

Synthetic bilayer exhibits exotic structure of Haldane pseudopotentials:

Normal bilayer: Monotonic decay.

Synthetic bilayer interactions: non-monotonic behavior favoring singlets at *m*=0

[Cian, TG, Vaezi, Liu, Hafezi, Phys. Rev. B 102, 085430 (2020)] [Ghazaryan, TG, Gullans, Ghaemi, Hafezi, Phys. Rev. Lett. 119, 247403 (2017)]

Exotic interactions and Fibonacci phase

Synthetic bilayer exhibits exotic structure of Haldane pseudopotentials:

Normal bilayer: Monotonic decay.

Synthetic bilayer interactions: non-monotonic behavior favoring singlets at *m*=0

 \rightarrow Synthetic bilayer supports non-Abelian Fibonacci phase. (candidate for *universal* topological quantum computing)

Mohammad

Hafezi (JQI)

(JQI)

(IST Austria)

Pouyan

Abolhassan Vaezi Zhao Liu Ghaemi (CUNY) (Tehran) (Zhejiang)

[Cian, TG, Vaezi, Liu, Hafezi, Phys. Rev. B 102, 085430 (2020)] [Ghazaryan, TG, Gullans, Ghaemi, Hafezi, Phys. Rev. Lett. 119, 247403 (2017)]

Thank you!

Detection

👬 Fundación "la Caixa"

EXCELENCIA SEVERO

OCHOA

neineer HHamil

tonians

Fundació Privada Fundació Privada

Adjabati State @ ICFO: Barbara Andrade Niccolo Baldelli Utso Bhattacharya Alexandre Dauphin Joana Fraxenet Valentin Kasper Bernhard Irsigler Maciej Lewenstein Debrah Rakshit Leticia Tarruell

 Ø JQI/UMD/NIST:
 Przemek Bienias Bin Cao
 Ze-Pei Cian
 Alexey Gorshkov
 Mohammad Hafezi
 Rex Lundgren
 Glenn Solomon

Nuria Barberan (UBarcelona) Alessio Celi (UA Barcelona) **Ovidiu** Cotlet (ETH Zurich) **Michael Gullans** (Princeton) Walter Hofstetter (U Frankfurt) Tobias Huber (U Wuerzburg) Atac Imamoglu (ETH Zurich) Bruno Julia-Diaz (UBarcelona) Joseph Maciejko (Alberta) Guido Pagano (RICE) **David Raventos** (IFF Madrid) **Christoph Weitenberg** (U Hamburg) Abolhassan Vaezi (Sharif)

Max-Planck Institute for the Science of Light 11.03.2021 Discussion of Plans

Designer Quantum Matter from the Optical Toolbox and more

Tobias Grass

Research lines

CONDENSED MATTER THEORY MEETS QUANTUM OPTICS

- Floquet Engineering of Many-Body Phases
- Non-linear optics and strongly correlated matter

QUANTUM INFORMATION

- Quantum Algorithms and Machine Learning
- Topological Codes

List of Topics

Floquet Engineering of Many-Body Phases:

- Optical dressing: tunable interactions for electrons
- → N-body interactions?

- The heating challenge: Tailoring thermalization channels?
- More structure using structured light: electronic quantum simulators?
- Non-linear optics and strongly correlated matter:
 - High-harmonic spectra
 from topological matter
 - Exciton-polaritons in topological matter and topological matter out of exciton-polaritons
- Quantum Algorithms:
 - → Digital gate preparation of topological states
 - Checks and cheats for adiabatic quantum computers
 - Understand computational complexity using machine learning

Floquet Engineering of Many-Body Phases

- Tunable Interactions:
 - → Coupled Landau levels yields synthetic bilayer with exotic interactions - depending on coupled levels [Ghazaryan, TG, Gullans, Ghaemi, Hafezi, Phys. Rev. Lett. 119, 247403 (2017)]
 - Develop systematic coupling scheme (various LLs , pulse shaping, etc.) for interactions "on demand"
 - → LL mixing leads to effective N-body interactions

[Sodemann & MacDonald, Phys. Rev. B 87, 245425 (2013)]

Even weak terms are relevant in some systems (e.g. 5/2 state)

[Pakrouski, Peterson, Jolicoeur, Scarola, Nayak, Troyer, Phys. Rev. X 5, 021004 (2015)]

- Heating is bottleneck of Floquet engineering. Include thermalization!
 - Simulate open system dynamics (e.g. quantum jump method)
- Further topics: SSH model, twisted bilayer, twisted light,...

[Seetharam *et al.*, Phys. Rev. X 5, 041050 (2015)] [D'Alessio & Rigol, Phys. Rev. X 4, 041048 (2014)]

Topology in topology: Coupled Landau levels form SSH chain.

Floquet Engineering of Many-Body Phases

Tunable Interactions:

→ Coupled Landau levels yields synthetic bilayer with exotic interactions - depending on coupled levels [Ghazaryan, TG, Gullans, Ghaemi, Hafezi, Phys. Rev. Lett. 119,

[Ghazaryan, 10, Gunans, Ghaenn, Harezi, Phys. Rev. Lett. 1 247403 (2017)]

- Develop systematic coupling scheme (various LLs , pulse shaping, etc.) for interactions "on demand"
- → LL mixing leads to effective N-body interactions [Sodemann & MacDonald, Phys. Rev. B 87, 245425 (2013)] Even weak terms are relevant in some

systems (e.g. 5/2 state)

[Pakrouski, Peterson, Jolicoeur, Scarola, Nayak, Troyer, Phys. Rev. X 5, 021004 (2015)]

- Heating is bottleneck of Floquet engineering. Include thermalization!
 - Simulate open system dynamics (e.g. quantum jump method)
- Further topics: SSH model, twisted bilayer, twisted light,...

[Seetharam *et al.*, Phys. Rev. X 5, 041050 (2015)] [D'Alessio & Rigol, Phys. Rev. X 4, 041048 (2014)]

Topology in topology: Coupled Landau levels form SSH chain.

Floquet Engineering of Many-Body Phases

Tunable Interactions:

Coupled Landau levels yields synthetic bilayer with exotic interactions - depending on coupled levels
 [Ghazaryan, TG, Gullans, Ghaemi, Hafezi, Phys. Rev. Lett. 119,

247403 (2017)]

- Develop systematic coupling scheme (various LLs , pulse shaping, etc.) for interactions "on demand"
- → LL mixing leads to effective N-body interactions [Sodemann & MacDonald, Phys. Rev. B 87, 245425 (2013)]

Even weak terms are relevant in some systems (e.g. 5/2 state)

[Pakrouski, Peterson, Jolicoeur, Scarola, Nayak, Troyer, Phys. Rev. X 5, 021004 (2015)]

- Heating is bottleneck of Floquet engineering. Include thermalization!
 - Simulate open system dynamics (e.g. quantum jump method)
- Further topics: SSH model, twisted bilayer, twisted light,...

[Seetharam *et al.*, Phys. Rev. X 5, 041050 (2015)] [D'Alessio & Rigol, Phys. Rev. X 4, 041048 (2014)]

Topology in topology: Coupled Landau levels form SSH chain.

Non-linear Optics meets Correlated Matter

High-harmonic generation

 Well established in atomic systems, getting "popular" also in condensed matter

[Ghimire and Reis, Nat. Phys. 15, 10 (2019)]

- → Detection of topology via HHG [A. Chacon et al., Phys. Rev. B 102, 134115 (2020)]
- → Signatures of anyons?
 - → Kitaev chain (quadratic model)
 - Interacting models
- Signature of superconductivity?
 - → HHG spectra of cuprates
 - Jight-induced superconductivity
- Excitonic systems
 - Exciton-polaritons in FQH systems theoretical model for interactions?
 - Excitons bound to quasiparticles: Anyon detection via impurities?
 - Many-body phases of excitons: strong interactions, artificial gauge fields,...?

[S. Ravets *et al.*, Phys. Rev. Lett. 120, 057401 (2018)] [TG, Cotlet, İmamoğlu, Hafezi, Phys. Rev. B 101, 155127 (2020)]

> [Kwon et al., Phys. Rev. Lett. 122, 045302 (2019)] [Sanvitto et al., Nat. Phys. 6, 527 (2010)] [Lackner, ..., Hoefling, Schneider, arXiv 2102.09565]

Non-linear Optics meets Correlated Matter

High-harmonic generation

 Well established in atomic systems, getting "popular" also in condensed matter

[Ghimire and Reis, Nat. Phys. 15, 10 (2019)]

- → Detection of topology via HHG [A. Chacon et al., Phys. Rev. B 102, 134115 (2020)]
- Signatures of anyons?
 - → Kitaev chain (quadratic model)
 - Interacting models
- Signature of superconductivity?
 - → HHG spectra of cuprates
 - Jight-induced superconductivity

Excitonic systems

- Exciton-polaritons in FQH systems theoretical model for interactions?
- → Excitons bound to quasiparticles: Anyon detection via impurities?
- Many-body phases of excitons: strong interactions, artificial gauge fields,...?

[S. Ravets *et al.*, Phys. Rev. Lett. 120, 057401 (2018)] [TG, Cotlet, İmamoğlu, Hafezi, Phys. Rev. B 101, 155127 (2020)]

> [Kwon *et al.*, Phys. Rev. Lett. 122, 045302 (2019)] [Sanvitto *et al.*, Nat. Phys. 6, 527 (2010)] [Lackner, ..., Hoefling, Schneider, arXiv 2102.09565]

Quantum Algorithms

- Quantum Annealing
 - → Bottleneck: Closing of gap [Altshuler, Krovi, Roland, PNAS 107 12446 (2010)]
 - → Bias field can lead to significant improvements [TG, Phys. Rev. Lett. 123, 120501 (2019)]
 - Dynamical phase transitions: Hints for critical field strength through quench experiments?
 - → Reinforcement learning? [Bukov et al., Phys. Rev. X 8, 031086 (2018)] [Foesel et al., Phys. Rev. X 8, 031084 (2018)]
- Understanding computational complexity
 - → Phase transitions of computational complexity [Mertens, Phys. Rev. Lett. 81, 4281 (1998)]
 - Expectation: There are more subtle patterns which characterize the hard instances
 - → Idea: Use machine learning to identify them.
- → Gate preparation of topological qubits

[J. I. Latorre, V. Picó, and A. Riera Phys. Rev. A 81, 060309 (2010)] [Rahmani *et al*. PRX QUANTUM 1, 020309 (2020)]

 $H(t) = A(t)H_{\text{problem}} + B(t)H_{\text{driver}}$

My group

Currently:

2 PhD students

Barbara Andrade since 2020

since 2019

1 Post-Doc

Bernhard Irsigler since 2021

HORIZON EUROPE

EURATOM

* The European Institute of Innovation & Technology (EIT) is not part of the Specific Programme

RICE ETH zürich

Next steps:

- Local students?
- New hires?
- Funding?

Network:

Lewenstein, Chang, Biegert, Bachtold, Tarruell, Wall... Julia-Diaz, Barberan, Celi, ...

Weitenberg, Sengstock

Pagano Imamoglu