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First part:
  

Artificial graphene / real bilayer



  

Why to build a bilayer?
➢ Coulomb drag              

[cf. B. N. Narozhny and A. Levchenko,  Rev.  
Mod. Phys. 88, 025003 (2016)]

with two layers of graphene
[e.g. Gorbachev, R. V. et al. (Manchester) 
Strong Coulomb drag and broken symmetry 
in double-layer graphene. Nat. Phys. 8, 896 
(2012)]

or two layers of non-relativistic 2DEG

or heterostructures (graphene + 2DEG)  
[see figure]

➢ Single-particle effects when 
combining graphene and 
hexagonal boron nitride
[Yankowitz, M. et al. (Tucson)
Emergence of superlattice Dirac points in 
graphene on hexagonal boron nitride. Nat. 
Phys. 8, 382 (2012)]

Let’s see what we can do 
with artificial graphene…



  

Artificial graphene

From review article: Marco Polini et al. , Artificial honeycomb lattices for electrons, atoms and photons, Nat. Nano 8, 625 (2013)

Semiconductors Molecules Cold atoms Photonic crystals

Subject particles to hexagonal lattice potential!



  

[ Leticia Tarruell et al. Creating, moving and merging Dirac points with a Fermi gas in a tunable honeycomb lattice. Nature 483, 302 (2012)]

Cold atom artificial graphene



  

Bilayer setup
Graphene layer on top of “normal” layer:
Combine brick-wall lattice and square lattice!



  

Bilayer setup
Graphene layer on top of “normal” layer:
Combine brick-wall lattice and square lattice!

Possible with 
depicted 
arrangement of 
ten laser beams.



  

Bandstructure in the bilayer
Tight-binding Hamiltonian:

Uncoupled bands:



  

Bandstructure in the bilayer
Tight-binding Hamiltonian:

➢ Interlayer coupling generates new Dirac points at 
intersections of square-layer band and brick-wall layer 
band.

➢ Interlayer coupling shifts graphene Dirac points towards 
the BZ center where they finally merge.



  

A curiosity: Bandstructure at merging point
Excitations characterized by gap, velocity, effective mass:

Along the two in-plane directions, excitations look very differently when Dirac points merge: 
Coexistence of massless and massive excitations!

See also:
G. Montambaux, F. Piéchon, J.-N. Fuchs, and M. O. Goerbig, Phys. Rev. B 80, 153412 (2009)
P. Dietl, F. Piéchon, and G. Montambaux, Phys. Rev. Lett. 100, 236405 (2008)



  

Mean-field for attractive interactions
Fill bilayer with spin-1/2 fermions → interactions on doubly occupied sites:

 Mean-field decoupling for attractive interactions (U=-u<0):

Quadratic Hamiltonian:

Self-consistent solution:

Fix gap 
parameters!

Solve 
Hamiltonian!

Evaluate 
correlations 
and particle 

number!

Simpler at half-filling (one atom per 
site), as chemical potential is fixed: 

Fix chemical 
potential!



  

Superfluid vs. semimetal
Half-filling (1 atom per site):

Uncoupled brick-
wall layer exhibits 
SM-SF transition.

For weak interactions, 
interlayer coupling 
suppresses SF in 
square layer.

For intermediate interactions, 
coupling enhances SF in brick-
wall layer.
Strong coupling suppresses SF 
in both layers.



  

Superfluid vs. semimetal
Half-filling (1 atom per site):

Uncoupled brick-
wall layer exhibits 
SM-SF transition.

1/4-filling (half atom per site):

No SM phase in 
uncoupled system

SM-SF transition at 
finite coupling

Strong coupling 
suppresses SF phase

For weak interactions, 
interlayer coupling 
suppresses SF in 
square layer.

For intermediate interactions, 
coupling enhances SF in brick-
wall layer.
Strong coupling suppresses SF 
in both layers.



  

Quantum magnetism
Effective Hamiltonian for strongly 
repulsive system: with

Neel-to-dimer transition upon increasing interlayer coupling:

The staggered magnetization 
vanishes in both layers 
simultaneously for 

Two square layers:

Two hexagonal layers:

(QMC data for up to 1152 sites)



  

Summary ...
● Shift and merge Dirac points by layer coupling!

● New Dirac points!
●  Give rise to SM-SF transition at filling one-fourth.
● Interlayer coupling can enhance or suppress SF phase.

● Magnetic transition in Mott phase: 
long-range Neel to dimer.

● What happens when one layer becomes topological? 
Proximity-induced topological order?
→ Haldane model
→ shaken gauge field

● Quantum magnetism with anisotropic coupling strengths:
competition between dimer phase in brick-wall and long-range 
ordered phase in square lattice

● Mott transition in the bilayer?

Unique dimer order in 
brick-wall...

?
… but no corresponding 
order in the square lattice

… and Outlook



  

Second part:
  

Real Graphene / Artificial Bilayer

More precisely:

Light-controlled Fractional Quantum 
Hall Effect in Graphene



  

Quantum Hall Effect
As transport phenomenon: Quantized 
Hall Resistance

Explanation in terms of topology: 
Protected Edge States

David Thouless

Klaus v. Klitzing

1985

2016

Fractional Quantum Hall Effect 
and Anyonic Quasiparticles

1998

Non-Abelian Anyons and 
Topological Quantum Computing

Use non-Abelian anyons as robust 
quantum memory.
Quantum information is processed 
by braiding these anyons.

NO NOBEL PRIZE YET!!



  

Graphene in magnetic field: Landau levels

See also review article: M. Goerbig, Electronic properties of graphene in a strong magnetic field, Rev. Mod. Phys. 83  4 (2011)

Effective Hamiltonian around Dirac point:

In magnetic field:

Pauli matrices represent sublattice structure!

“Standard” Landau level wave functions:

Graphene Landau level wave functions:

and

Features of relativistic Landau levels:

● Spinor wave function 

● Spin and valley degeneracy:
4 bands per energy level 

● Particle-hole symmetry 

● Non-equidistant energy levels!

At energies



  

Optical coupling of graphene Landau levels

Areg Ghazaryan, Michael J. Gullans, Pouyan Ghaemi, Mohammad Hafezi, Light-induced fractional quantum Hall phases in graphene (arXiv:1612.08748)

LL gap Coupling

Depending on properties of the light, the orbital 
quantum number m is changed or not.

Symmetric gauge: m ↔  orbital angular momentum
Landau gauge: m ↔ momentum



  

Optical coupling of graphene Landau levels

Areg Ghazaryan, Michael J. Gullans, Pouyan Ghaemi, Mohammad Hafezi, Light-induced fractional quantum Hall phases in graphene (arXiv:1612.08748)

LL gap Coupling

In rotating frame after rotating wave approximation (RWA):

Interactions after RWA:

Tunable Fractional Quantum 
Hall Hamiltonian 
(assuming spin and valley polarization):}

Depending on properties of the light, the orbital 
quantum number m is changed or not.

Symmetric gauge: m ↔  orbital angular momentum
Landau gauge: m ↔ momentum



  

Optical coupling of graphene Landau levels

Strong coupling

Low-energy manifold: lower 
dressed Landau level.

How does dressing 
modify interactions?

Three scenarios (all work in progress):

Weak coupling

Both Landau levels can be 
occupied.

Bilayer quantum Hall 
phases?

Pulsed coupling

System is prepared in the lower 
level.

Transfer between 
Landau levels?



  

Strong coupling: Haldane pseudopotentials

 LL0 ↔ LL1  LL1 ↔ LL2

Dressed Landau level:

Modification of pseudopotentials are rather small.

We checked at filling ν=2/3 that strongly coupled system forms a PH-conjugated Laughlin 
phase, just as the uncoupled system does.

Effects at other filling factors? 



  

Weak coupling: bilayer quantum Hall phases

IQH

interlayer
Pfaffian?
overlap:
0.81

Yrast line for coupling

Haldane-
Rezayi 
singlet
overlap:
0.97

?

?
(not  
331-
state) ?

Competitors:     M=18    IR-Pfaffian vs. 330-state (both v=2/3)
                         M=24    HR state vs. Jain singlet (v=1/2 and v=2/3)



  

Weak coupling: bilayer quantum Hall phases

Many competing quantum Hall states at ν=2/3:

Layer polarization Quasiparticles Torus degeneracy
PH Laughlin Mono-layer Abelian 3

       (Read-Rezayi) Mono-layer Non-Abelian 15

330-Halperin Singlet/bilayer Abelian 9

112-Halperin Singlet/bilayer Abelian 3

CF (Jain) Singlet/bilayer Abelian 3

Interlayer Pfaffian Singlet/bilayer Non-Abelian 9

Intralayer Pfaffian Singlet/bilayer Non-Abelian 27

Fibonacci Singlet/bilayer Non-Abelian 6



  



  

Some results on the torus ...

● 3-fold degenerate singlet 
● but no good overlap with Jain state or 112-Halperin state
● Overlap with 330-state: 0.44



  

Some results on the torus ...

Six-fold quasidegeneracy at K=0 ?
Fibonacci phase?

Roton 
instability?



  

Some results on the torus ...

● No gap for N=10  → Compressible phase?
● Or is it an even/odd effect?
● Maybe interesting non-Abelian phases appear only in small systems?
● Or only for coupling with angular momentum exchange?



  

Coupling of two levels by a pulse

On the single-particle level, a π-pulse coupling “flips” the LL index:

Does this also work on the many-body level?

Start with Laughlin state in LLL!

Shift in m-quantum numbers 
produces quasihole!

Shift in n-quantum numbers 
translates state into higher 
Landau level!

This could be used to produce quasiholes:

Angular momentum is conserved here!Angular momentum is conserved here!



  

Coupling of two levels by a pulse

On the single-particle level, a π-pulse coupling “flips” the LL index:

Does this also work on the many-body level?

Start with Laughlin state in LLL!

Shift in m-quantum numbers 
produces quasihole!

Shift in n-quantum numbers 
translates state into higher 
Landau level!

This could be used to produce quasiholes:



  

Modeling the time evolution

We model the wave function by superposition of initial 
state, quasihole state, and edge-like excitations:

Measure fractional 
charge/statistics by 
interference of Laughlin  and 
quasihole state?

[cf. proposal for atoms by Paredes, 
Fedichev, Cirac, Zoller, PRL 2001]

System is never in a 
superposition of only these 
two states.



  

Summary & Outlook
● Light can be used to control/ manipulate condensed matter
● Quantum Hall effect with graphene:

Non-equidistant Landau levels → can selectively couple to two levels
● Different control scenarios are possible:

Engineer Haldane 
pseudopotentials! Create new degree of freedom

e.g. bilayer phases!

Maybe supporting non-Abelian 
anyons?

Create and braid 
quasiholes generated 

by light!
Thank

you!

STRONG 
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COUPLING

WEAK 
COUPLING

PULSED 
COUPLING
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