Synthetic graphene in real bilayers and synthetic bilayers of real graphene

Tobias Grass

Uni Kaiserslautern 29.05. 2017

First part: Artificial graphene / real bilayer

Work published in: 2D Mater. 4 (2017) 015039

Leticia Tarruell N (ICFO)

Maciej Lewenstein C)

Vittorio Pellegrini (IIT Genova)

Second part: Real graphene / artificial bilayer

(JQI / NIST)

Work in progress!

Mohammad Hafezi

Michael Gullans

Areg Ghazaryan

Pouyan Ghaemi

(City College New York)

First part: Artificial graphene / real bilayer

Why to build a bilayer?

Coulomb drag

[cf. B. N. Narozhny and A. Levchenko, Rev. Mod. Phys. 88, 025003 (2016)]

with two layers of graphene [e.g. Gorbachev, R. V. *et al. (Manchester)* Strong Coulomb drag and broken symmetry in double-layer graphene. Nat. Phys. **8**, 896 (2012)]

or two layers of non-relativistic 2DEG

or heterostructures (graphene + 2DEG) [see figure]

Single-particle effects when combining graphene and hexagonal boron nitride

[Yankowitz, M. *et al. (Tucson)* Emergence of superlattice Dirac points in graphene on hexagonal boron nitride. Nat. Phys. **8**, 382 (2012)]

Let's see what we can do with artificial graphene...

From

Anomalous low-temperature Coulomb drag in graphene-GaAs heterostructures

A. Gamucci, D. Spirito, M. Carrega, B. Karmakar, A. Lombardo, M. Bruna, L. N. Pfeiffer, K. W. West, A. C. Ferrari, M. Polini & V. Pellegrini *Nature Communications* 5, Article number: 5824 | doi:10.1038/ncomms6824

⁽**a**,**b**) Configurations for the Coulomb drag measurements. In **a**, a voltage drop V_{drag} appears in graphene, in response to a drive current I_{drive} flowing in the 2DEG. In **b**, the opposite occurs. The drag voltage is measured with a low-noise voltage amplifier coupled to a voltmeter as a function of the applied bias. The drive current is also monitored. (**c**) Conical massless Dirac fermion band structure of low-energy carriers in SLG. The SLG in this work is hole-doped. (**d**) Parabolic band structure of ordinary Schrödinger electrons in the 2DEG. (**e**) Optical micrograph of the device before the deposition of Ohmic contacts. The SL flake becomes visible in green light after the sample is coated with a polymer (PMMA)³¹. The scale bar is 10 µm long. (**f**) Optical microscopy image of the contacted SLG on the etched 2DEG GaAs channel. The red dashed line denotes the SLG boundaries. The scale bar is 10 µm long.

Artificial graphene

Subject particles to hexagonal lattice potential!

Cold atom artificial graphene

[Leticia Tarruell et al. Creating, moving and merging Dirac points with a Fermi gas in a tunable honeycomb lattice. Nature 483, 302 (2012)]

Bilayer setup

Graphene layer on top of "normal" layer: Combine brick-wall lattice and square lattice!

Bilayer setup

Bandstructure in the bilayer

Tight-binding Hamiltonian:

$$H_{\rm tb} = -J_{\rm b} \sum_{\mathbf{i} \in A} \left(b_{\mathbf{i}+\hat{x}}^{\dagger} a_{\mathbf{i}} + b_{\mathbf{i}-\hat{x}}^{\dagger} a_{\mathbf{i}} + b_{\mathbf{i}+\hat{y}}^{\dagger} a_{\mathbf{i}} \right) - J_{\rm s} \sum_{\langle \mathbf{i}, \mathbf{j} \rangle} \tilde{b}_{\mathbf{j}}^{\dagger} \tilde{a}_{\mathbf{i}} - J_{\perp} \sum_{\mathbf{i}} \left(a_{\mathbf{i}}^{\dagger} \tilde{a}_{\mathbf{i}} + b_{\mathbf{i}}^{\dagger} \tilde{b}_{\mathbf{i}} \right) + \mathrm{H.c.},$$

Uncoupled bands:

$$E_{\pm}(\mathbf{k}) = \pm E_{\rm br}(\mathbf{k}) = \pm J\sqrt{3 + 2\cos(2k_x a) + 2\cos[(k_x + k_y)a] + 2\cos[(k_x - k_y)a]},$$

$$E_{\rm sq}(\mathbf{k}) = -2J\left[\cos(k_x a) + \cos(k_y a)\right],$$

Bandstructure in the bilayer

Tight-binding Hamiltonian:

$$H_{\rm tb} = -J_{\rm b} \sum_{\mathbf{i} \in A} \left(b_{\mathbf{i}+\hat{x}}^{\dagger} a_{\mathbf{i}} + b_{\mathbf{i}-\hat{x}}^{\dagger} a_{\mathbf{i}} + b_{\mathbf{i}+\hat{y}}^{\dagger} a_{\mathbf{i}} \right) - J_{\rm s} \sum_{\langle \mathbf{i}, \mathbf{j} \rangle} \tilde{b}_{\mathbf{j}}^{\dagger} \tilde{a}_{\mathbf{i}} - J_{\perp} \sum_{\mathbf{i}} \left(a_{\mathbf{i}}^{\dagger} \tilde{a}_{\mathbf{i}} + b_{\mathbf{i}}^{\dagger} \tilde{b}_{\mathbf{i}} \right) + \text{H.c.}$$

- Interlayer coupling generates new Dirac points at intersections of square-layer band and brick-wall layer band.
- Interlayer coupling shifts graphene Dirac points towards the BZ center where they finally merge.

A curiosity: Bandstructure at merging point

Excitations characterized by gap, velocity, effective mass:

$$E(k) \sim \Delta + \hbar v k + \frac{\hbar^2 k^2}{2m} + \dots$$

Along the two in-plane directions, excitations look very differently when Dirac points merge: Coexistence of massless and massive excitations!

See also:

G. Montambaux, F. Piéchon, J.-N. Fuchs, and M. O. Goerbig, Phys. Rev. B 80, 153412 (2009) P. Dietl, F. Piéchon, and G. Montambaux, Phys. Rev. Lett. 100, 236405 (2008)

Mean-field for attractive interactions

Fill bilayer with spin-1/2 fermions \rightarrow interactions on doubly occupied sites:

$$H_{\rm int} = U \sum_{\mathbf{i}} (a^{\dagger}_{\mathbf{i}\uparrow} a^{\dagger}_{\mathbf{i}\downarrow} a_{\mathbf{i}\downarrow} a_{\mathbf{i}\downarrow} + b^{\dagger}_{\mathbf{i}\uparrow} b^{\dagger}_{\mathbf{i}\downarrow} b_{\mathbf{i}\downarrow} b_{\mathbf{i}\uparrow} + \tilde{a}^{\dagger}_{\mathbf{i}\uparrow} \tilde{a}^{\dagger}_{\mathbf{i}\downarrow} \tilde{a}_{\mathbf{i}\downarrow} \tilde{a}_{\mathbf{i}\downarrow} + \tilde{b}^{\dagger}_{\mathbf{i}\uparrow} \tilde{b}^{\dagger}_{\mathbf{i}\downarrow} \tilde{b}_{\mathbf{i}\downarrow} \tilde{b}_{\mathbf{i}\uparrow}),$$

Mean-field decoupling for attractive interactions (U=-u<0):

$$\Delta_{\rm br} \equiv (4u/N) \sum_{\mathbf{k}} \langle a_{-\mathbf{k}\downarrow} a_{\mathbf{k}\uparrow} \rangle = (4u/N) \sum_{\mathbf{k}} \langle b_{-\mathbf{k}\downarrow} b_{\mathbf{k}\uparrow} \rangle, \qquad \Delta_{\rm sq} \equiv (4u/N) \sum_{\mathbf{k}} \langle \tilde{a}_{-\mathbf{k}\downarrow} \tilde{a}_{\mathbf{k}\uparrow} \rangle = (4u/N) \sum_{\mathbf{k}} \langle \tilde{b}_{-\mathbf{k}\downarrow} \tilde{b}_{\mathbf{k}\uparrow} \rangle.$$

1

Quadratic Hamiltonian:

$$H_{\rm BCS} = \sum_{\sigma \neq \sigma'} \sum_{\mathbf{k}} \left(a_{\mathbf{k}\sigma}^{\dagger}, a_{-\mathbf{k}\sigma'}, b_{\mathbf{k}\sigma}^{\dagger}, b_{-\mathbf{k}\sigma'}, \tilde{a}_{\mathbf{k}\sigma}^{\dagger}, \tilde{a}_{-\mathbf{k}\sigma'}, \tilde{b}_{\mathbf{k}\sigma}^{\dagger}, \tilde{b}_{-\mathbf{k}\sigma'} \right) \cdot \begin{pmatrix} -\mu & \Delta_{\rm br} & -J_{\mathbf{k}}^{\rm br} & 0 & -J_{\perp} & 0 & 0 \\ \Delta_{\rm br}^{\rm br} & \mu & 0 & J_{\rm br}^{\rm br} & 0 & J_{\perp} & 0 & 0 \\ -J_{-\mathbf{k}}^{\rm br} & 0 & -\mu & \Delta_{\rm br} & -0 & 0 & -J_{\perp} & 0 \\ 0 & J_{-\mathbf{k}}^{\rm br} & \Delta_{\rm br}^{\star} & \mu & 0 & 0 & 0 & J_{\perp} \\ -J_{\perp} & 0 & 0 & 0 & -\mu & \Delta_{\rm sq} & -J_{\mathbf{k}}^{\rm sq} & 0 & J_{\mathbf{k}}^{\rm sq} \\ 0 & J_{\perp} & 0 & 0 & \Delta_{\rm sq}^{\star} & \mu & 0 & J_{\mathbf{k}}^{\rm sq} \\ 0 & 0 & -J_{\perp} & 0 & -J_{\mathbf{k}}^{\rm sq} & 0 & -\mu & \Delta_{\rm sq} \\ 0 & 0 & 0 & J_{\perp} & 0 & J_{\mathbf{k}}^{\rm sq} & \Delta_{\rm sq}^{\star} & \mu \end{pmatrix} \cdot \begin{pmatrix} a_{\mathbf{k}\sigma} \\ a_{-\mathbf{k}\sigma'}^{\dagger} \\ b_{\mathbf{k}\sigma}^{\dagger} \\ \tilde{a}_{\mathbf{k}\sigma}^{\dagger} \\ \tilde{a}_{\mathbf{k}\sigma}^{\dagger} \\ \tilde{a}_{\mathbf{k}\sigma}^{\dagger} \\ \tilde{b}_{\mathbf{k}\sigma}^{\dagger} \end{pmatrix}$$

Self-consistent solution:

Superfluid vs. semimetal

Half-filling (1 atom per site):

For intermediate interactions, coupling enhances SF in brick-Strong coupling suppresses SF

Superfluid vs. semimetal

Half-filling (1 atom per site):

2

0

1

 J_{\perp}/J

3

Uncoupled brickwall layer exhibits SM-SF transition.

For weak interactions, interlayer coupling suppresses SF in square layer.

For intermediate interactions, coupling enhances SF in brick-Strong coupling suppresses SF in both layers.

Quantum magnetism

Effective Hamiltonian for strongly repulsive system:

$$H_{\rm eff} = \sum_{ij} J_{ij}^{\rm ex} \mathbf{S}_i \cdot \mathbf{S}_j \quad \text{with} \quad J_{ij}^{\rm ex} = J_{ij}^2 / U$$

Neel-to-dimer transition upon increasing interlayer coupling:

Summary ...

- Shift and merge Dirac points by layer coupling!
- New Dirac points!
- Give rise to SM-SF transition at filling one-fourth.
- Interlayer coupling can enhance or suppress SF phase.
- Magnetic transition in Mott phase: long-range Neel to dimer.

... and Outlook

- What happens when one layer becomes topological? Proximity-induced topological order?
 - \rightarrow Haldane model
 - ightarrow shaken gauge field
- Quantum magnetism with anisotropic coupling strengths: competition between dimer phase in brick-wall and long-range ordered phase in square lattice
- Mott transition in the bilayer?

Unique dimer order in brick-wall...

... but no corresponding order in the square lattice

Second part: Real Graphene / Artificial Bilayer

More precisely:

Light-controlled Fractional Quantum Hall Effect in Graphene

Quantum Hall Effect

As transport phenomenon: Quantized Hall Resistance

Explanation in terms of topology: Protected Edge States

right-moving skipping orbit

Fractional Quantum Hall Effect and Anyonic Quasiparticles

$$\Psi_{\text{Laughlin}} = \prod_{i < j} (z_i - z_j)^{1/\nu} \mathrm{e}^{-\sum_i |z_i|^2/4}$$
1998

Robert B. Laughlin Prize share: 1/3

Horst L. Störmer Prize share: 1/3

Daniel C. Tsui Prize share: 1/3

Non-Abelian Anyons and

Topological Quantum Computing

Use non-Abelian anyons as robust quantum memory. Quantum information is processed by braiding these anyons.

NO NOBEL PRIZE YET!!

David Thouless

Graphene in magnetic field: Landau levels

Effective Hamiltonian around Dirac point:

$$H_{\xi} = \xi v_{\rm F} (p_x \sigma_x + p_y \sigma_y)$$
$$\xi = \pm \text{ for } K, K'$$

Pauli matrices represent sublattice structure!

In magnetic field:

$$p_i \to \Pi_i = p_i + eA_i$$
$$\Pi_x = \frac{\hbar}{\sqrt{2}l_{\rm B}}(a^{\dagger} + a) \text{ and } \Pi_y = \frac{\hbar}{i\sqrt{2}l_{\rm B}}(a^{\dagger} - a)$$
$$H_{\xi} = \xi\sqrt{2}\frac{\hbar v_{\rm F}}{l_{\rm B}}\begin{pmatrix} 0 & a\\ a^{\dagger} & 0 \end{pmatrix}$$

"Standard" Landau level wave functions:

$$a^{\dagger}\varphi_{n,m} = \varphi_{n+1,m}$$

Graphene Landau level wave functions:

$$\begin{split} \Psi_{n=0,m} &= \begin{pmatrix} 0\\ \varphi_{0,m} \end{pmatrix} \text{ and } \quad \Psi_{n>0,m} = \frac{1}{\sqrt{2}} \begin{pmatrix} \varphi_{n-1,m}\\ \xi\lambda\varphi_{n,m} \end{pmatrix} \\ \text{At energies} \quad \epsilon_{\lambda n} &= \lambda \frac{\hbar v_{\mathrm{F}}}{l_{\mathrm{B}}} \sqrt{2n} \qquad \qquad \lambda = \pm \end{split}$$

Features of relativistic Landau levels:

- Spinor wave function
- Spin and valley degeneracy:
 4 bands per energy level
- Particle-hole symmetry
- Non-equidistant energy levels!

See also review article: M. Goerbig, Electronic properties of graphene in a strong magnetic field, Rev. Mod. Phys. 83 4 (2011)

Optical coupling of graphene Landau levels

Depending on properties of the light, the orbital quantum number *m* is changed or not.

Symmetric gauge: $m \leftrightarrow$ orbital angular momentum Landau gauge: $m \leftrightarrow$ momentum

$$H_0(t) = \sum_m \left[\frac{\Delta E}{2} \left(c_{n+1,m}^{\dagger} c_{n+1,m} - c_{n,m}^{\dagger} c_{n,m} \right) + \hbar \Omega \left(c_{n+1,m+\mu}^{\dagger} c_{n,m} e^{-i(\Delta E - \delta)t} + \text{h.c.} \right) \right]$$

Optical coupling of graphene Landau levels

In rotating frame after rotating wave approximation (RWA):

$$H_0 = \sum_m \left(\hbar \Omega c_{n+1,m+\mu}^{\dagger} c_{n,m} + \text{h.c.} + \hbar \delta c_{n+1,m}^{\dagger} c_{n+1,m} \right)$$

Interactions after RWA:

$$V_{m_1,m_2,m_3,m_4}^{n_1,n_2,n_3,n_4(\text{RWA})} = \delta_{n_1+n_2-n_3-n_4} V_{m_1,m_2,m_3,m_4}^{n_1,n_2,n_3,n_4}$$

Tunable Fractional Quantum Hall Hamiltonian (assuming spin and valley polarization):

$$H = H_0 + V^{(\text{RWA})}$$

Areg Ghazaryan, Michael J. Gullans, Pouyan Ghaemi, Mohammad Hafezi, Light-induced fractional quantum Hall phases in graphene (arXiv:1612.08748)

Optical coupling of graphene Landau levels

Three scenarios (all work in progress):

Strong coupling: Haldane pseudopotentials

Modification of pseudopotentials are rather small.

We checked at filling v=2/3 that strongly coupled system forms a PH-conjugated Laughlin phase, just as the uncoupled system does.

Effects at other filling factors?

Weak coupling: bilayer quantum Hall phases

Yrast line for coupling $\{2, m\} \leftrightarrow \{1, m\}$

 $(N = 6, \Omega = 0.001, \delta = 0.02)$

Competitors: M=18 IR-Pfaffian vs. 330-state (both v=2/3) M=24 HR state vs. Jain singlet (v=1/2 and v=2/3)

Weak coupling: bilayer quantum Hall phases

Many competing quantum Hall states at v=2/3:

	Layer polarization	Quasiparticles	Torus degeneracy
PH Laughlin	Mono-layer	Abelian	3
\mathbb{Z}_4 (Read-Rezayi)	Mono-layer	Non-Abelian	15
330-Halperin	Singlet/bilayer	Abelian	9
112-Halperin	Singlet/bilayer	Abelian	3
CF (Jain)	Singlet/bilayer	Abelian	3
Interlayer Pfaffian	Singlet/bilayer	Non-Abelian	9
Intralayer Pfaffian	Singlet/bilayer	Non-Abelian	27
Fibonacci	Singlet/bilayer	Non-Abelian	6

Some results on the torus ...

 $\nu = 2/3, N = 8, \Omega = 0.001, \delta = 0.02$

- 3-fold degenerate singlet
- but no good overlap with Jain state or 112-Halperin state
- Overlap with 330-state: 0.44

Some results on the torus ...

 $\nu = 2/3, N = 8, \Omega \to 0, \delta = 0.02$

Fibonacci phase?

instability?

Some results on the torus ...

- No gap for $N=10 \rightarrow$ Compressible phase?
- Or is it an even/odd effect?
- Maybe interesting non-Abelian phases appear only in small systems?
- Or only for coupling with angular momentum exchange?

Coupling of two levels by a pulse

On the single-particle level, a π -pulse coupling "flips" the LL index:

 $\varphi_{n,m} \to \varphi_{n+1,m+1} = a^{\dagger} b^{\dagger} \varphi_{n,m}$

Angular momentum is conserved here! $l = \hbar(m - n)$

Does this also work on the many-body level?

$$\Psi \to \prod_{i=1}^N a_i^{\dagger} b_i^{\dagger} \Psi$$

This could be used to produce quasiholes:

$$\Psi = \Psi_{\mathrm{L}} \sim \prod_{i < j} (z_i - z_j)^3$$
 Sta
 $\left(\prod_i b_i^{\dagger}\right) \Psi \sim \left(\prod_i z_i\right) \Psi_{\mathrm{L}} \sim \Psi_{\mathrm{qh}}$
 $\left(\prod_i a_i^{\dagger}\right) \Psi_{\mathrm{qh}} \sim \Psi'_{\mathrm{qh}}$ Shared the state of the state of

Start with Laughlin state in LLL!

Shift in *m*-quantum numbers produces quasihole!

Shift in *n*-quantum numbers translates state into higher Landau level!

Coupling of two levels by a pulse

On the single-particle level, a π -pulse coupling "flips" the LL index:

$$\varphi_{n,m} \to \varphi_{n+1,m+1} = a^{\dagger} b^{\dagger} \varphi_{n,m}$$

Does this also work on the many-body level?

$$\Psi \to \prod_{i=1}^N a_i^{\dagger} b_i^{\dagger} \Psi$$

This could be used to produce quasiholes:

$$\Psi = \Psi_{\mathrm{L}} \sim \prod_{i < j} (z_i - z_j)^3$$
 Sta
 $\left(\prod_i b_i^{\dagger}\right) \Psi \sim \left(\prod_i z_i\right) \Psi_{\mathrm{L}} \sim \Psi_{\mathrm{qh}}$
 $\left(\prod_i a_i^{\dagger}\right) \Psi_{\mathrm{qh}} \sim \Psi'_{\mathrm{qh}}$ State

Start with Laughlin state in LLL!

Shift in *m*-quantum numbers produces quasihole!

Shift in *n*-quantum numbers translates state into higher Landau level!

Modeling the time evolution

We model the wave function by superposition of *initial* <u>state</u>, <u>quasihole state</u>, and <u>edge-like excitations</u>:

$$\Psi_{\text{model}}(t) = \sum_{s=0}^{N} \sqrt{\binom{N}{s}} \cos(\Omega t)^{N-s} \sin(\Omega t)^{s} \Psi^{(s)},$$
$$\Psi^{(s)} = \sum_{\{k_1, \dots, k_s\}} (-1)^{\sum_{j=1}^{s} k_j} (-i)^{\text{mod}(s,2)} \frac{1}{\sqrt{\binom{N}{s}}} \prod_{j=1}^{s} a_{k_j}^{\dagger} b_{k_j}^{\dagger} \Psi_{\text{L}}.$$

Measure fractional charge/statistics by interference of Laughlin and quasihole state?

[cf. proposal for atoms by Paredes, Fedichev, Cirac, Zoller, PRL 2001]

System is never in a superposition of only these two states.

Summary & Outlook

- Light can be used to control/ manipulate condensed matter
- Quantum Hall effect with graphene: Non-equidistant Landau levels → can selectively couple to two levels
- Different control scenarios are possible:

STRONG COUPLING

Engineer Haldane pseudopotentials!

WEAK COUPLING

Create new degree of freedom e.g. bilayer phases!

Maybe supporting non-Abelian anyons?

PULSED COUPLING

Create and braid quasiholes generated by light!

Thank you!