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Modern history of trapped ions

1995 2004 08 10 12 14Quantum 
logic gates

Spin
chains

Ising
spins Long

range
coupling 

Dyna-
mics

Flexible emulator of spin models:

→ tunable interactions
→ good access to many observables
→ microscopic systems
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Complexity classes
C

om
pl
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P: Decision problems solvable on a deterministic computer in 
polynomial time

NP-complete: “Hardest” problems in NP (to which any NP 
problem can be mapped in polynomial time)

NP: Decision problems which can be solved on a non-
deterministic computer (or whose positive answer can be 
verified on a deterministic computer) in polynomial time

NP-hard: Problems at least as hard as NP-complete problems, 
but not necessarily in NP

NP

NP-hard

NP-complete

P
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polynomial time

NP-complete: “Hardest” problems in NP (to which any NP 
problem can be mapped in polynomial time)

NP: Decision problems which can be solved on a non-
deterministic computer (or whose positive answer can be 
verified on a deterministic computer) in polynomial time

NP-hard: Problems at least as hard as NP-complete problems, 
but not necessarily in NP

P = NP

NP-hard

NP-complete

P = NP ?
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     Computation time: 23 CPU yrs.
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Spin glass solver

D-Wave machine

   →  Is it really quantum?
   →  Is there quantum speed-up?

* chimera graph with up to 1024 qbits
* adjustable bimodal couplings
* quantum annealing of classical
   Ising spin glass

arXiv 1512.02206
Science (2014)
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Trapped ions quantum annealer?

* Potential complexity due to very high connectivity
* Tunability of interactions
* Quantum annealing via transverse field
* Access to many observables (e.g. local spin polarization)

How to get complex 
Hamiltonians with ions?

vs
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Phonons

Interaction picture + rotating wave approximation:
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Spin-spin interactions

Raman coupling:
Rabi frequency (at ion i)
recoil energy
laser beatnote frequency

(transverse)
Phonons

Interaction picture + rotating wave approximation:

Quadratic completion:
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Spin-spin interactions

(transverse)
Phonons

Effective Hamiltonian:

Raman coupling:
Rabi frequency (at ion i)
recoil energy
laser beatnote frequency
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Phonon modes

Effective Hamiltonian:

Lamb-Dicke parameter          depend on phonon modes:
Phonon Hamiltonian:

Trap and Coulomb potential:

Phonon modes and frequencies are 
eigenvalues and eigenvectors of V:

Coupling:
* at constant Rabi frequency
* adjustable via laser frequency
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Energy is cost function of number partitioning:

Optimized by ground states – parity eigenstates:

Mattis model

Effective ion Hamiltonian:

Special cases: Mattis model

Antiferromagnetic coupling to mode mFerromagnetic coupling to mode m

Two-fold degenerate ground state defined 
by pattern: 

GS1= GS2=

GS1= GS2=

GS1= GS2=

GS1= GS2=
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Mattis model

Effective ion Hamiltonian:

Special cases: Mattis model

Two-fold degenerate ground state defined 
by pattern: 

GS1= GS2=

GS1= GS2=

GS1= GS2=

GS1= GS2=

Energy is cost function of number partitioning:

Optimized by ground states – parity eigenstates:

Exponentially large ground 
state manifold:

→ Mattis spin glass

Antiferromagnetic coupling to mode mFerromagnetic coupling to mode m
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Mattis model

Effective ion Hamiltonian:

GS1= GS2=

GS1= GS2=

GS1= GS2=

GS1= GS2=

From single-mode to two-mode 
approximation:

Ferromagnetic and antiferromagnetic 
couplings can be satisfied simultaneously.

Verified by exact numerical calculations for 
small systems (N=10).
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Complexity of the problem

➔  Enhancing complexity via influence of additional modes:

 Increasing ion number 
 Multiple Raman couplings:

➔  Two-mode approximation yields only trivial problems:

 Analytical solution is simple
 Experimental solution (via quantum simulation) still carries all 

difficulties of complex spin glass problems

➔  Enhancing complexity within single-mode approximation:

 Number partitioning is potentially NP-complete
 Precision of the numbers must scale with the number of spins
 Still not all instances are difficult to solve → trivial instances!
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Complexity of the problem

➔  Enhancing complexity via influence of additional modes:

 Increasing ion number 
 Multiple Raman couplings:

➔  Two-mode approximation yields only trivial problems:

 Analytical solution is simple
 Experimental solution (via quantum simulation) still carries all 

difficulties of complex spin glass problems

➔  Enhancing complexity within single-mode approximation:

 Number partitioning is potentially NP-complete
 Precision of the numbers must scale with the number of spins
 Instances become non-trivial if parity symmetry is broken
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From trivial to complex

Parity 
symmetry

Number partitioning 
is trivial.

Break symmetry to make things complex!

Option II: Fast pulses

Option III: Rabi frequencies

Option I: Microtraps
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From classical to quantum

Classical Hamiltonian Quantum Hamiltonian

Spin glass or 
“ferromagnet”

Quantum spin glass
 or “ferromagnet” 

or paramagnet
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“Phase diagram”

Useful thermal averages:

(should be calculated for
 in the presence of a Z

2
 breaking field) 

Magnetic susceptibility:

(small longitudinal field h plus Z
2
 breaking field) 

System properties upon varying 
detuning and transverse field (N=6):
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 starting from the paramagnetic configuration?
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Quantum annealer

Can we reach the ground state in the glassy regime
 starting from the paramagnetic configuration?

Time-dependent magnetic field:

How slow does it have to be?

How slow can it be (dissipation)?

Which role do phonons play?
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Closed system dynamics

Phonons and spin-phonon coupling:

With time-dependent transverse field (annealing) and symmetry-breaking bias:
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Closed system dynamics

Phonons and spin-phonon coupling:

With time-dependent transverse field (annealing) and symmetry-breaking bias:

Results for N=6
(using Krylov 

subspace method)

(a,b)
(c)
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Monte Carlo wave function method:

Unitary evolution interrupted by 
random quantum jumps

Averaged over many runs
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Open system dynamics

Dissipative processes:

Spontaneous emission:         flip                Dephasing:          flip

Monte Carlo wave function method:

Unitary evolution interrupted by 
random quantum jumps

Averaged over many runs

Example of a simple instance with N=4.
Noise rate: 1 flip per ms.
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* neurons: firing or not → “spin-1/2”
* synapsis: connection between two neurons → coupling

exitatory synapsis: ferromagnetic
inhibitory synapsis: antiferromagnetic
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exitatory synapsis: ferromagnetic
inhibitory synapsis: antiferromagnetic

Associative memory:
2N classical ground states given by patterns                      : 

Memorized information (pattern) is retrieved through 
the dynamics of the model

E
ne

rg
y Selected references:

Model: J. Hopfield (PNAS 1982)
Connection to spin glasses: D. Amit, H. Gutfreund, H. 
Sompolinsky (PRL 1985)
Connection to Dicke models: P. Strack & S. Sachdev (PRL 
2011), S. Gopalakrishnan, B. Lev, P. Goldbart (PRL 2011),
P. Rotondo, M. Lagomarsino,  G. Viola (PRL 2015)
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Connection to neural networks

The brain as a spin model:
* neurons: firing or not → “spin-1/2”
* synapsis: connection between two neurons → coupling

exitatory synapsis: ferromagnetic
inhibitory synapsis: antiferromagnetic

Associative memory:
2N classical ground states given by patterns                      : 

Memorized information (pattern) is retrieved through 
the dynamics of the model

E
ne

rg
y Selected references:

Model: J. Hopfield (PNAS 1982)
Connection to spin glasses: D. Amit, H. Gutfreund, H. 
Sompolinsky (PRL 1985)
Connection to Dicke models: P. Strack & S. Sachdev (PRL 
2011), S. Gopalakrishnan, B. Lev, P. Goldbart (PRL 2011),
P. Rotondo, M. Lagomarsino,  G. Viola (PRL 2015)

Trapped ion 
devices with 
associative 

memory, e.g.
for pattern 

recognition?
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Quantum ground state patterns

Classical Hamiltonian Quantum Hamiltonian

Classical ground state 
reflects the mode 

pattern.

Symmetry                      maintained,
but 2-fold degeneracy broken:
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Quantum ground state patterns

Classical Hamiltonian Quantum Hamiltonian

Hamiltonian for low excitations (one spin flip):

Has one eigenvector with non-zero eigenvalue:

Symmetry                      maintained,
but 2-fold degeneracy broken:

GS for strong B-field:

Classical ground state 
reflects the mode 

pattern.
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Quantum ground state patterns

Classical Hamiltonian Quantum Hamiltonian

Ground state pattern 
given by nearest 

ferromagnetically 
coupled mode.

Symmetry                      maintained,
but 2-fold degeneracy broken:

 Hamiltonian for low excitations (one spin flip):

Has one eigenvector with non-zero eigenvalue:

GS for strong B-field:
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Quantum ground state patterns

Classical Hamiltonian Quantum Hamiltonian

Binary memory Real valued memory

Hamiltonian for low excitations (one spin flip):

Has one eigenvector with non-zero eigenvalue:

GS for strong B-field:
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Summary & Outlook

Trapped ions can be used as:

→ spin glass solver (classical or quantum Mattis glass)

→ solver of number partitioning problem 
     (either trivial with parity symmetry or NP-hard)

→ flexible quantum annealer (alternatives to D-Wave)
     Test and optimize annealing protocols!

→ (quantum) neural network 
     Pattern recognition (with real-valued data sets)

David Raventós 
(ICFO)

Christian 
Gogolin 
(ICFO,MPQ)

Bruno Juliá- 
Díaz (UB, ICFO)

Maciej
Lewenstein
(ICFO, ICREA)
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My work on ions

SU(3) models and 
quantum chaos

Heisenberg models

Artificial 
magnetic fluxes

Mattis glass and 
number partitioning
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Tunable-range Heisenberg chains
Short-range side 

→ Quasi-long-range order
→ Fast propagation of excitations

Long-range side

→ Dimerization
→ Excitations localize
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Quantum chaos in an SU(3) model

Motivation System with SU(3) algebra do not have a unique classical limit.  
Dynamics of the system (chaotic or regular?) depends on the            

                             representation.                                    [Gnutzmann, Haake, Kuś, J. Phys. A (2000)]

  Goal      Develop quantum simulations with SU(3) systems

Yields Lipkin-Meshkov-Glick model
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Quantum chaos in an SU(3) model

Signatures of quantum chaos

Level spacing distribution: Time evolution of observables:
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Quantum chaos in an SU(3) model

Signatures of quantum chaos

Level spacing distribution: Time evolution of observables:
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My work on ions

SU(3) models and 
quantum chaos

Heisenberg models

Artificial 
magnetic fluxes

Mattis glass and 
number partitioning
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Artificial magnetic fluxes in 1D systems
Butterfly spectrum

En
er

gy

Magnetic flux

Mapping: XY model ↔ hopping hard-core bosons

Hopping:

Spin flip:

NN+NNN with complex phases → Ladder with fluxes
→  Topological band structure 
      (edge states, Chern numbers)

→  Chern insulating phases of bosons

Non-trivial loops in 1D via long-range links
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→  Topological band structure 
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→  Chern insulating phases of bosons

Mapping: XY model ↔ hopping hard-core bosons

Hopping:
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Artificial magnetic fluxes in 1D systems
Non-trivial loops in 1D via long-range links Butterfly spectrum
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Summary

SU(3) models and 
quantum chaos

Heisenberg models

Artificial 
magnetic fluxes

Mattis glass and 
number partitioning
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