Atomtronics, Benasque, 13.05.2015

Quantum Simulation-of-the

Quantum Hall Effect

Tobias Grass (ICFO - Barcelona)

ICFO

In collaboration with: Bruno Julia-Diaz (University Barcelona) Maciej Lewenstein (ICFO) Nuria Barberan (University Barcelona) David Raventos (ICFO)

Cold atomic quantum Hall effect – Why?

Systems with well controlled Hamiltonians

Quantum Hall solver

Hard problem: Competition between different phases

Novel quantum Hall phases

- Quantum Hall effect of bosons
- Interacting integer quantum Hall phases
- Ideal phases (parent Hamiltonians)

Exploring anyonic properties

- First experimental detection of fractional statistics
- Braiding of (non-Abelian) anyons
- Anyon technologies

Outline

1. Quantum Hall Physics – in general:

- Single-particle physics: Landau levels
- Many-body effects: Trial states

2. Fractional quantum Hall physics of spin-1/2 bosons:

- Abelian vs. Non-Abelian phases
- Numerical results: ambiguous
- Prospects of a quantum simulation

3. Integer quantum Hall physics of spin-1/2 bosons:

- Interactions are crucial
- Edge spectrum as a fingerprint

4. Anyon braiding in small systems

Outline

- 1. Quantum Hall Physics in general:
- Single-particle physics: Landau levels
- Many-body effects: Trial states

2. Fractional quantum Hall physics of spin-1/2 bosons:

- Abelian vs. Non-Abelian phases
- Numerical results: ambiguous
- Prospects of a quantum simulation
- 3. Integer quantum Hall physics of spin-1/2 bosons:
- Interactions are crucial
- Edge spectrum as a fingerprint

4. Anyon braiding in small systems

Quantum Hall Systems

Trial states: Laughlin and Halperin

Wave functions with "zeros" for all particle pairs:

→ Laughlin wave function (spinless system)

$$\Psi_{\rm L}^{(q)} = \prod_{i < j} (z_i - z_j)^q \exp\left[-\sum_i |z_i|^2/2\right] \quad \text{filling } \nu = 1/q$$
$$(z = x + iy)$$

→ Halperin wave function (two-component system)

fillings
$$\nu_{\uparrow} = \frac{l-n}{lm-n^2}$$
 and $\nu_{\downarrow} = \frac{m-n}{lm-n^2}$

Exact zero-energy solutions in contact potential!

Trial states: Pairing states

1) Divide system into k clusters.

2) Each cluster forms a Laughlin/Halperin state.

3) (Anti-)Symmetrize over all possible clusters.

→ Read-Rezayi series (spinless):

$$\Psi_{\rm RR}^{(k)} \sim \mathcal{S}[\Psi_{\rm L}^{(2)}(z_{i_1}, \dots, z_{i_M})\Psi_{\rm L}^{(2)}(z_{i_{M+1}}, \dots, z_{i_{2M}})\dots]$$
filling $\nu = k/2$

Moore/Read (1991) Read/Rezayi (1999)

→ Non-Abelian spin singlet (NASS) series

Ardonne/Schoutens (1999)

$$\begin{split} \Psi_{\mathrm{NASS}}^{(k)} &\sim \mathcal{S}[\Psi_{\mathrm{H}}^{(221)}(z_{i_1\uparrow}, \dots, z_{i_M\uparrow}, z_{i_1\downarrow}, \dots, z_{i_M\downarrow})\Psi_{\mathrm{H}}^{(221)}(z_{i_{M+1}\uparrow}, \dots, z_{i_{2M}\uparrow}, z_{i_{M+1}\downarrow}, \dots, z_{i_{2M}\downarrow})\dots] \\ \text{filling} \quad \nu = 2k/3 \end{split}$$

Exact ground states for (*k*+1)-body contact interactions!

Trial states: Composite fermion states

Construction Recipe:

1. Composite fermion = particle + *m* magnetic fluxes

→ Jastrow factor:
$$J(z) = \prod_{i > i} (z_i - z_j)^m$$

- 2. CFs fill Landau levels at modified magnetic field
 → Slater determinant φ of filled LLs
- 3. Project back into low-energy space: Lowest Landau level of the original system

$$\Psi_{\rm CF} = \mathcal{P}_{\rm LLL} \Phi(z) J(z)$$

Construction works for fermionic and bosonic systems with or without spin, at filling factors $\nu = \frac{n}{mn \pm 1}$ where the number *m* of attached fluxes per particle must be even for fermions or odd for bosons.

Trial states: Overview

	Spinless fermions	Spinless bosons	Two-component bosons (fully unpolarized)
Abelian Fractional Quantum Hall States	Laughlin u = 1/q, q odd	Laughlin $ u = 1/q, q ext{ even}$	$ u = \frac{\text{Halperin}}{m+n}, m \text{ even} $
	CF states	CF states	CF states
	$\nu = \frac{n}{mn+1}, m \text{ even}$	$\nu = \frac{n}{mn+1}, m \text{ odd}$	$\nu = \frac{n}{n \pm 1} \notin \mathbb{N}$
Non-Abelian Fractional Quantum Hall States	$\frac{\text{Read-Rezayi}}{\nu = \frac{k}{k+2}}$	Read-Rezayi $ u = \frac{k}{2}$	$\frac{\text{NASS}}{\nu = \frac{2k}{3}}$
Integer Quantum Hall States	trivial	\times	$\begin{array}{c} \text{CF state} \\ \nu = 2 \end{array}$

Trial states: Overview

	Spinless fermions	Spinless bosons	Two-component bosons (fully unpolarized)
Abelian Fractional Quantum Hall States	Laughlin $ u = 1/q, q \text{ odd} $	Laughlin $ u = 1/q, q ext{ even}$	$ u = \frac{\text{Halperin}}{m+n}, m \text{ even} $
	$\mathcal{CF \text{ states}}$ $\nu = \frac{n}{mn+1}, \ m \text{ even}$	CF states $\nu = \frac{n}{mn+1}, m \text{ odd}$	$\frac{\text{CF states}}{\nu = \frac{n}{n \pm 1} \notin \mathbb{N}}$
Non-Abelian Fractional Quantum Hall States	$\frac{\text{Read-Rezayi}}{\nu = \frac{k}{k+2}}$	Read-Rezayi $ u = rac{k}{2}$	NASS $ u = \frac{2k}{3} $
Integer Quantum Hall States	trivial	\times	$\begin{array}{c} \text{CF state} \\ \nu = 2 \end{array}$

Outline

1. Quantum Hall Physics – in general:

- Single-particle physics: Landau levels
- Many-body effects: Trial states
- 2. Fractional quantum Hall physics of spin-1/2 bosons:
- Abelian vs. Non-Abelian phases
- Numerical results: ambiguous
- Prospects of a quantum simulation
- 3. *Integer* quantum Hall physics of spin-1/2 bosons:
- Interactions are crucial
- Edge spectrum as a fingerprint

4. Anyon braiding in small systems

The System

We now focus on:

- bosons
- pseudospin-1/2
- in the lowest Landau level
- with contact interactions:

$$H = \sum_{i < j} \left[g_{\uparrow\uparrow} \delta(z_{i\uparrow} - z_{j\uparrow}) + g_{\downarrow\downarrow} \delta(z_{i\downarrow} - z_{j\downarrow}) + g_{\uparrow\downarrow} \delta(z_{i\uparrow} - z_{j\downarrow}) + g_{\uparrow\downarrow} \delta(z_{i\downarrow} - z_{j\uparrow}) \right]$$

• SU(2)-symmetric: $g_{\uparrow\uparrow} = g_{\downarrow\downarrow} = g_{\downarrow\downarrow}$

Numerical studies on different geometries:

Disk	Torus	Sphere
 most realistic edge effects 	 Purely bulk physics Complicated wave functions 	 Purely bulk physics Relatively simple wave func. Shifted filling factors

NASS series on the torus?

RAPID COMMUNICATIONS

RAPID COMMUNICATIONS

PHYSICAL REVIEW A 86, 031604(R) (2012)

Quantum Hall states in rapidly rotating two-component Bose gases

Shunsuke Furukawa and Masahito Ueda Department of Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan

PHYSICAL REVIEW A 86, 021603(R) (2012)

Non-Abelian spin-singlet states of two-component Bose gases in artificial gauge fields

T. Graß,¹ B. Juliá-Díaz,¹ N. Barberán,² and M. Lewenstein^{1,3}

¹ICFO-Institut de Ciències Fotòniques, Parc Mediterrani de la Tecnologia, 08860 Barcelona, Spain ²Departament ECM, Facultat de Física, Universitat de Barcelona, 08028 Barcelona, Spain ³ICREA-Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain

Exact diagonalization on the torus:

- Evidence of incompressible (gapped) phases at $\nu = \frac{2k}{3}$ for k = 1, 2, 3.
- NASS series?

NASS series on the torus?

Spectra of (k+1)-body contact interaction

NASS series on the torus?

Spectra of (k+1)-body contact interaction versus Spectra of two-body contact interaction

	RAPID COMMUNICATIONS
ED on torus:	PHYSICAL REVIEW A 86, 031604(R) (2012)
	Quantum Hall states in rapidly rotating two-component Bose gases
NASS phase	Shunsuke Furukawa and Masahito Ueda
at $v=4/3$	RAPID COMMUNICATIONS
	PHYSICAL REVIEW A 86, 021603(R) (2012)
	Non-Abelian spin-singlet states of two-component Bose gases in artificial gauge fields
	T. Graß, ¹ B. Juliá-Díaz, ¹ N. Barberán, ² and M. Lewenstein ^{1,3}
	¹ ICFO-Institut de Ciències Fotòniques, Parc Mediterrani de la Tecnologia, 08860 Barcelona, Spain
	² Departament ECM, Facultat de Física, Universitat de Barcelona, 08028 Barcelona, Spain
	³ ICREA-Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain

Different picture on the sphere!

PHYSICAL REVIEW B 87, 245123 (2013)

Quantum Hall effect of two-component bosons at fractional and integral fillings

Ying-Hai Wu and Jainendra K. Jain

Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA

Overlaps on the sphere:

- with NASS state: 0.918
- with CF state: 0.985

for N=12 at filling v=4/3.

BUT: Filling factor is biased on the sphere. $\nu = \frac{N}{N_V} + \delta$ Direct competition between NASS and CF is not possible on the sphere. (Neither on small disks!)

PHYSICAL REVIEW B 87, 245123 (2013)

Quantum Hall effect of two-component bosons at fractional and integral fillings

Ying-Hai Wu and Jainendra K. Jain

Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA

	RAPID COMMUNICATIONS
Quantum Hall states in rapidly rota	, 031604(R) (2012) RAPID COMMUNICATIONS PHYSICAL REVIEW A 86, 021603(R) (2012)
Shunsuke Furukawa an Department of Physics, University of Tokyo, 7-3-1	Non-Abelian spin-singlet states of two-component Bose gases in artificial gauge fields
	T. Graß, ¹ B. Juliá-Díaz, ¹ N. Barberán, ² and M. Lewenstein ^{1,3} ¹ ICFO-Institut de Ciències Fotòniques, Parc Mediterrani de la Tecnologia, 08860 Barcelona, Spain ² Departament ECM, Facultat de Física, Universitat de Barcelona, 08028 Barcelona, Spain ³ ICREA-Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain

PHYSICAL REVIEW B 87, 245123 (2013)

Quantum Hall effect of two-component bosons at fractional and integral fillings

Ying-Hai Wu and Jainendra K. Jain

Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA

	RAPID COMMUNICATIONS				
PHYSICAL REVIEW A 86	, 031604(R) (2012) RAPID COMMUNICATIONS				
Quantum Hall states in rapidly rota	PHYSICAL REVIEW A 86, 021603(R) (2012)				
Shunsuke Furukawa an Department of Physics, University of Tokyo, 7-3-1	Non-Abelian spin-singlet states of two-component Bose gases in artificial gauge fields				
	T. Graß, ¹ B. Juliá-Díaz, ¹ N. Barberán, ² and M. Lewenstein ^{1,3} ¹ ICFO-Institut de Ciències Fotòniques, Parc Mediterrani de la Tecnologia, 08860 Barcelona, Spain ² Departament ECM, Facultat de Física, Universitat de Barcelona, 08028 Barcelona, Spain ³ ICREA-Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain				
To solve the compe	etition, one might study:				
 Overlaps on the torus 					
 System on a dis 	$sk \rightarrow Quantum simulation!$				

PHYSICAL REVIEW B 87, 245123 (2013)

Quantum Hall effect of two-component bosons at fractional and integral fillings

Ying-Hai Wu and Jainendra K. Jain

Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA

Cold atom quantum simulation

All ingredients of the Hamiltonian are available:

- Synthetic magnetic fields
- 2-body contact potential

But how could a quantum simulation distinguish between different states?

Cold atom quantum simulation

All ingredients of the Hamiltonian are available:

- Synthetic magnetic fields
- 2-body contact potential

But how could a quantum simulation distinguish between different states?

Example:

$$N_{\uparrow} = 4$$
$$N_{\downarrow} = 4$$

$$L = 16$$

Correlation functions: $C(z_1, z_2) = \langle \Psi | \hat{\psi}^{\dagger}(z_1) \hat{\psi}^{\dagger}(z_2) \hat{\psi}(z_1) \hat{\psi}(z_2) | \Psi \rangle$

Cold atom quantum simulation

All ingredients of the Hamiltonian are available:

- Synthetic magnetic fields
- 2-body contact potential

But how could a quantum simulation distinguish between different states?

Correlation functions: $C(z_1, z_2) = \langle \Psi | \hat{\psi}^{\dagger}(z_1) \hat{\psi}^{\dagger}(z_2) \hat{\psi}(z_1) \hat{\psi}(z_2) | \Psi \rangle$

Outline

1. Quantum Hall Physics – in general:

- Single-particle physics: Landau levels
- Many-body effects: Trial states

2. Fractional quantum Hall physics of spin-1/2 bosons:

- Abelian vs. Non-Abelian phases
- Numerical results: ambiguous
- Prospects of a quantum simulation
- 3. *Integer* quantum Hall physics of spin-1/2 bosons:
- Interactions are crucial
- Edge spectrum as a fingerprint

4. Anyon braiding in small systems

What happens at *v=2* ?

PRL 110, 046801 (2013)

PHYSICAL REVIEW LETTERS

Integer Quantum Hall Effect for Bosons

T. Senthil¹ and Michael Levin²

¹Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA ²Department of Physics, Condensed Matter Theory Center, University of Maryland, College Park, Maryland 20742, USA Effective field theory: Possibility of an interacting integer quantum Hall effect for two-component bosons at *v=2*.

week ending 25 JANUARY 2013

			L
PRL 111, 090401 (2013) PHYSICAL REVIEW	LETTERS	week ending 30 AUGUST 20	13
Integer Quantum Hall State in Two-Component Bos	e Gases in a	a Synthetic Magnetic Field	
Shunsuke Furukawa and Ma	sahito Ueda		PHYSICAL REVIEW B 87, 245123 (2013)
Department of Physics, University of Tokyo, 7-3-1 Hong	o, Bunkyo-ku, 1		
		Quantum Hall effect of	two-component bosons at fractional and integral fillings
		RAPID COMMUNICATIONS	
PHYSICAL REVIEW B 88, 161106(R) (2013)		Ying-Hai Wu and Jainendra K. Jain Pannoulyania State University University Park, Pannoulyania 16802, USA
Missesses is model for the bases interest model			emisyivana siale oniversity, oniversity rank, remisyivana 10002, 05A
Microscopic model for the boson integer quan	um Hall en	ect	
N. Regnault ^{1,2} and T. Senthil ³		PHYSICA	AL REVIEW B 89, 045114 (2014)
¹ Department of Physics, Princeton University, Princeton, New ² Laboratoire Pierre Aigrain, ENS and CNRS, 24 rue Lhomond			
³ Department of Physics, Massachusetts Institute of Technology, Cambridg		Quantum Hall	phases of two-component bosons
		T. Graß, ¹ D. Ravento	ós, ² M. Lewenstein, ^{1,3} and B. Juliá-Díaz ^{1,2}
	¹ ICFO-	Institut de Ciències Fotònique	s, Parc Mediterrani de la Tecnologia, 08860 Barcelona, Spain
	² Departame	nt d'Estructura i Constituents	de la Matèria, Universitat de Barcelona, 08028 Barcelona, Spain
	3	ICREA–Institució Catalana a	le Recerca i Estudis Avançats, 08010 Barcelona, Spain
Tobia	s Grass (ICFO) - 13.05.2015 A	tomtronics
			24/37

What happens at *v=2* ?

PRL 110, 046801 (2013)

PHYSICAL REVIEW LETTERS

Integer Quantum Hall Effect for Bosons

T. Senthil¹ and Michael Levin²

¹Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA ²Department of Physics, Condensed Matter Theory Center, University of Maryland, College Park, Maryland 20742, USA Effective field theory: Possibility of an interacting integer quantum Hall effect for two-component bosons at *v=2*.

		week ending	7
PRL 111, 090401 (2013) PHYSICAL REVIEW	LETTERS	30 AUGUST 2013	
Integer Quantum Hall State in Two-Component Bos	e Gases in	a Synthetic Magnetic Field	
Shunsuke Furukawa and Mas	ahito Ueda	F	PHYSICAL REVIEW B 87, 245123 (2013)
Department of Physics, University of Tokyo, 7-3-1 Hongo	o, Bunkyo-ku, 1		
		Quantum Hall effect of ty	wo-component bosons at fractional and integral fillings
		RAPID COMMUNICATIONS	X7' XI 'XX7 I ' IZ I '
PHYSICAL REVIEW B 88, 161106(R) (2013))		Ying-Hai Wu and Jainendra K. Jain
			ennsylvania State University, University Park, Pennsylvania 10802, USA
Microscopic model for the boson integer quant	um Hall ef	fect	
N. Regnault ^{1,2} and T. Senthil ³		PHYSICA	L REVIEW B 89, 045114 (2014)
¹ Department of Physics, Princeton University, Princeton, New ² Laboratoire Pierre Aigrain, FNS and CNRS, 24 rue Lhomond			
³ Department of Physics, Massachusetts Institute of Technology, Cambrid,		Quantum Hall p	hases of two-component bosons
			n - Calendar a Barra I. Januar I. (Azerban Marcolla), 1977 - Marcolla Calendar I. (Arabitation), 1978 - Calendar
		T. Graß, ¹ D. Raventós	s, ² M. Lewenstein, ^{1,3} and B. Juliá-Díaz ^{1,2}
	¹ ICFO-	Institut de Ciències Fotòniques	, Parc Mediterrani de la Tecnologia, 08860 Barcelona, Spain
2	² Departame	ent d'Estructura i Constituents d	de la Matèria, Universitat de Barcelona, 08028 Barcelona, Spain
		³ ICREA–Institució Catalana de	e Recerca i Estudis Avançats, 08010 Barcelona, Spain
Tobia	s Grass	(ICFO) – 13.05.2015 At	omtronics

week ending 25 JANUARY 2013

What happens at v=2 ?

iorus:	
Grass, Julia-Diaz, Barberan, Lewenstein (PRA,	2012)
Regnault & Senthil (PRB, 2013)	
Furukawa & Ueda (PRL, 2013)	

Sphere: Furukawa & Ueda (PRL, 2013) Wu & Jain (PRB, 2013)

Τ.....

→ no NASS phase
→ unique, gapped GS

Entanglement spectra: → edge physics of iIQHE

Overlap: with CF state 0.888 (*N=14*)

Disk: Wu & Jain (PRB, 2013) Grass, Raventos, Julia-Diaz, Lewenstein (PRB, 2014) Edge spectrum agrees with IQH theory.

Overlap with CF state: 0.970 (*N*=8, *L*=16)

Edge spectrum at *v=2*

Effective edge Hamiltonian of singlet state [J.E. Moore, F.D.M. Haldane, PRB **55** 7818 (1997)]

$$H_{\rm edge} \propto v_s (S_z^2 + \sum_l l b_l^{\dagger} b_l) + v_c \sum_l l c_l^{\dagger} c_l$$

TABLE I. Number of modes of H_{edge} with $v_s < 0$ and $v_c > 0$.

ΔL_z	-4	-3	-2	-1	+1	+2	+3	+4
Number of singlets	2	1	1	0	1	2	3	5
Number of triplets	2	2	1	1	0	0	0	0
Number of quintets	1	0	0	0	0	0	0	0

27/37

Edge spectrum at *v=2*

Effective edge Hamiltonian of singlet state [J.E. Moore, F.D.M. Haldane, PRB 55 7818 (1997)]

$$H_{\text{edge}} \propto v_s (S_z^2 + \sum_l l b_l^{\dagger} b_l) + v_c \sum_l l c_l^{\dagger} c_l$$

Numerical results on a disk [T. Grass et al., PRB 89 045114 (2014)]

 $N_{\uparrow} = 4$ $N_{\downarrow} = 4$ $L_z = 16 + \Delta L_z$

Explicit construction of edge states provides the same counting, and good overlaps:

- Backward states: Excite CFs in fluxreversed Lls
- Forward states: Symmetric polynomial

TABLE I. Number of modes of H_{edge} with $v_s < 0$ and $v_c > 0$.

ΔL_z	-4	-3	-2	-1	+1	+2	+3	+4
Number of singlets	2	1	1	0	1	2	3	5
Number of triplets	2	2	1	1	0	0	0	0
Number of quintets	1	0	0	0	0	0	0	0

Outline

1. Quantum Hall Physics – in general:

- Single-particle physics: Landau levels
- Many-body effects: Trial states

2. Fractional quantum Hall physics of spin-1/2 bosons:

- Abelian vs. Non-Abelian phases
- Numerical results: ambiguous
- Prospects of a quantum simulation
- 3. *Integer* quantum Hall physics of spin-1/2 bosons:
- Interactions are crucial
- Edge spectrum as a fingerprint

4. Anyon braiding in small systems

One-component Bose gas

One-component Bose gas

One-component Bose gas

Quasiholes in FQH states

Holes in fractional quantum Hall systems:

- → Candidates for anyonic quasi-particle excitations
- → Fractional quantum statistics
- → Atomic samples:
 - Creation by a laser beam
 - Control of the position
 - Ramsey interferometry

B. Paredes, P. Fedichev, J. I. Cirac, and P. Zoller. PRL 87, 010402 (2001)
B. Juliá-Díaz, T. Grass, N. Barberán, M. Lewenstein, NJP 14, 055003 (2012)
T. Grass, B. Juliá-Díaz, M. Lewenstein, PRA 89, 013623 (2014)

Anyon braiding

Interchange two quasiholes and observe the phase difference: $\Psi \rightarrow e^{i\varphi} \Psi$

Fractional statistical phase becomes robust even in small Laughlin systems

B. Juliá-Díaz, T. Grass, N. Barberán, M. Lewenstein, NJP 14, 055003 (2012)

Anyon braiding

To test the robustness of braiding phase, we switch on an additional, tunable d-wave interaction:

1.5

 V_2/V_0

2.5

3

3.5

3

T. Grass, B. Juliá-Díaz, M. Lewenstein, PRA 89, 013623 (2014)

Tobias Grass (ICFO) – 13.05.2015 Atomtronics

0.25

Outline

1. Quantum Hall Physics – in general:

- Single-particle physics: Landau levels
- Many-body effects: Trial states

2. Fractional quantum Hall physics of spin-1/2 bosons:

- Abelian vs. Non-Abelian phases
- Numerical results: ambiguous
- Prospects of a quantum simulation

3. *Integer* quantum Hall physics of spin-1/2 bosons:

- Interactions are crucial
- Edge spectrum as a fingerprint

4. Anyon braiding in small systems

The people

David Raventós

Bruno Juliá-Díaz

Maciej Lewenstein

Nuria Barberán

