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Write a breakthrough paper! 

(linear programming algorithm)
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http://www.math.uwaterloo.ca/tsp/
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Problem solved? - Not really!

Even the best algorithms fail (i.e. take too long) when the problem size gets bigger

World record: 85,900 connections
Took 136 cpu-years to calculate
Design of computer chip
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P: Decision problems solvable on a deterministic 
computer in polynomial time

NP-complete: “Hardest” problems in NP (to which 
any NP problem can be mapped in polynomial time)

NP: Decision problems whose positive answer can be 
verified on a deterministic computer in polynomial time,
that is equivalent to,
decision problems which can be solved on a non-
deterministic computer in polynomial time.

NP-hard: Problems at least as hard as NP-complete 
problems, but not necessarily in NP

P

NP

NP-hard

NP-complete

Complexity classes

Examples for NP-hard problems:
● Traveling salesperson
● Number partitioning
● Exact cover
● Spin glasses

... 

Open problem:

(Note the 1 million dollar reward for a proof!)
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Contents

1) Simulated annealing:
●  Cooling a problem to its solution
●  Example: traveling salesperson problem

2) Quantum annealing:
●  Quantum time evolution to the solution
●  Examples: Spin models, exact Cover
● Adiabatic theorem, limitations, and workarounds
●  Physical implementations (D-Wave, ions)

3) Phases of a computational problem:
Statistical physics analysis applied to the number 
partitioning problem
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Thermodynamic sampling (Metropolis algorithm)

Statistical physics: 

● Macroscopic behavior can be understood without knowing microscopic state

● Likelihood of a microscopic state j is controlled by Boltzmann factors:

● Thermal averages: 
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Thermodynamic sampling (Metropolis algorithm)

Statistical physics: 

● Macroscopic behavior does not depend on the microscopic state

● Likelihood of a microscopic state j is controlled by Boltzmann factors:

● Thermal averages: 

Metropolis sampling to evaluate average:

(1) Start with a random microscopic state j, and evaluate its energy 

(2) Follow some (well chosen) rules to modify the state, leading to a new state k with energy 

(3) If                   :  Always accept new configuration: 

Else:                 Accept with probability

✔    Detailed balance:   

✔    Ergodicity: path between any pair of configurations?

Problem:   Slow dynamics at low temperature
  Algorithm remains in metastable solutions for a long time

Solution:   Annealing → decrease temperature slowly! 

unlikely
at low T
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Simulated annealing 

Intuition:

● Heating and slow cooling can reduce defects in a material

Implementation:

● Use Metropolis algorithm for sampling in configuration space
● Energy ↔ Cost function
● Temperature as control parameter:

– High temperature: explore gross “energy” landscape
– Lower temperature: force the algorithm into good solution
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Simulated annealing in the traveling salesperson problem

Example: 400 cities in 9 clusters

● High-T: find an efficient way to 
connect  clusters

● Low-T: optimize connection within 
each cluster
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Simulated annealing in the traveling salesperson problem

Example: 400 cities in 9 clusters

● High-T: find an efficient way to 
connect  clusters

● Low-T: optimize connection within 
each cluster

Simulated annealing typically 
performs well in finding a good 
solution, but it usually fails to give 
the best solution.



Tobias Grass (JQI)
JQI Summer School, 07/27/2018

Contents

1) Simulated annealing:
●  Cooling a problem to its solution
●  Example: traveling salesperson problem

2) Quantum annealing:
●  Quantum time evolution to the solution
●  Examples: Spin models, exact Cover
●  Adiabatic theorem, limitations, and workarounds
●  Physical implementations (D-Wave, ions)

3) Phases of a computational problem:
Statistical physics analysis applied to the number 
partitioning problem



Tobias Grass (JQI)
JQI Summer School, 07/27/2018

From simulated to quantum annealing

● Cost function given by the Hamiltonian of a
a (classical) Ising model:

● Transverse field to control quantum fluctuations:

Simulated annealing (SA) Quantum annealing (QA)

Dynamics Master equation Schroedinger equation

Driving force Thermal fluctuations Quantum fluctuations

Control parameter Temperature
(from equilibrium at high T

to equilibrium at zero T)

Quantum field strength
(from ground state at strong field

to ground state at no field)

Which dynamics, SA vs QA, comes closer/faster to the ground state ?
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Numerical tests

(I) Ferromagnetic model (II) Spin glass model

Results:

● Slow decay: Both SA and QA reproduce 
stationary states

● Fast decay: QA gets closer to ground state

● QA works particularly well in glassy system
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Quantum annealing in LiHo
1-x
Y
x
F
4

Disordered quantum magnet 

Doped material with  randomly distributed spins:

Transverse magnetic field term:

Phase diagram:

J. Brooke, D. Bitko, T. F. Rosenbaum, G. Aeppli
Science 284, 779 (1999)

Cooling schedule and ac susceptibility 
(at 15Hz) as a function of time:
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Quantum annealing for Exact Cover Problem

Relation to computer science:

Can quantum annealing solve an NP-hard computational problem?

Example in early proposal: “Exact Cover 3”

● Given N bits {z1,...,zN} and M clauses
Each clause selects three bits {zi,zj,zk}, demanding zi+zj+zk=2

● Is there a bit assignment which satisfies all clauses simultaneously?

E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda
Science 292, 472 (2001)
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Quantum annealing for Exact Cover Problem

Back to computation:

Can quantum annealing solve an NP-hard computational problem?

Early proposal: Exact cover.
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● Is there a bit assignment which satisfies all clauses simultaneously?

E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda
Science 292, 472 (2001)
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Quantum annealing for Exact Cover Problem

Back to computation:

Can quantum annealing solve an NP-hard computational problem?

Early proposal: Exact cover.

● Given N bits {z1,...,zN} and M clauses.
Each clause selects three bits {zi,zj,zk}, demanding zi+zj+zk=2.

● Is there a bit assignment which satisfies all clauses simultaneously?

● Spin language:

Is the ground state energy E=0 or E>0 ?

E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda
Science 292, 472 (2001)
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Quantum annealing for Exact Cover Problem

Back to computation:

Can quantum annealing solve an NP-hard computational problem?

Early proposal: Exact cover.

● Given N bits {z1,...,zN} and M clauses.
Each clause selects three bits {zi,zj,zk}, demanding zi+zj+zk=2.

● Is there a bit assignment which satisfies all clauses simultaneously?

● Spin language:

Is the ground state energy E=0 or E>0 ?

E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda
Science 292, 472 (2001)

Exponentially many
satisfying assignments No satisfying assignment

EASY EASYHARD

● Generate generically hard instances by constructing clauses with unique satisfying assignment (USA)

Annealing schedule:

What is the probability of being in the ground state of Hp at time t=T ?

with
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Quantum annealing for Exact Cover Problem

Numerical results:

● Success probability: 

For a given system size N, find runtime T 
such that p is fixed, e.g., p=1/8

● T is found to scale polynomially with N

What about the worst instances?

● Averaged over the worst 10%, the probability 
remains relatively constant with N

● Accessible system size too small to make strong 
claims regarding scalability

E. Farhi et al.,
Science 292, 472 (2001)
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Adiabatic theorem and Landau-Zener problem

Spin-1/2 particle in a time-dependent magnetic field:

● Time-dependent Schroedinger equation:

● Leads to one second-order differential equation which can be solved exactly

● Probability of excitation during the evolution:

● Adiabatic condition:

● The annealing time has to scale as
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Scaling of the gap in Exact Cover QA Algorithm

Perturbative expansion:

mth order connects configurations which 
are separated by up to m spin flips

First-order correction is the same for all 
configurations

For large N, the coefficients F(m) behave 
like sum of random numbers

leading order: 
m=2

mf ~ f(M/N) N

 “spin-flip-distance”
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Can we avoid exponentially small gaps?

● Modify cost function? 

Exponentially small gaps have also been seen for other cost functions of similar complexity

        [T. Joerg, F. Krzakala, J. Kurchan, A.C. Maggs, PRL 101, 147204 (2008)]

● Modify the initial Hamiltonian?

Standard protocol:

Modified protocol:

[E. Farhi, J. Goldstone, D. Gosset, S. Gutmann, H. Meyer, P. Shor, Quant. Inf. Comp. 11, 181 (2011)]

● Make the Hamiltonian non-stoquastic?
Stoquastic: No sign problem. All off-diagonal elements (in z-basis) are positive (e.g. transverse Ising) 

Introducing terms which render the Hamiltonian non-stoquastic can turn 1st order phase transitions to 
2nd order transitions:

Example:

[H. Nishimori and K. Takada Front. ICT 4:2 (2017)]

● Thermal assisted quantum annealing?

[N. Dickson et al., Nat. Commun. 4, 1903 (2013)]
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Experimental realization: D-wave

● Up to 2048 superconducting flux qubits

● Programmable Josephson couplings in blocks of 8 qubits 
and between blocks (chimera geometry)

● Individual longitudinal fields and global transverse field

●

● Does it work? – Maybe!

Output matches expectations

[S. Boixo et al., Nature Phys. 10, 218 (2014)]

No clear sign of quantum speedup
[T. Ronnow et al., Science Science  345, 420 (2014)]
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Alternative platforms: Trapped ions

● Raman spin-flip transition coupled to different phonon modes m 

● Second-order: effective Ising model

● Close to a resonance we get a Mattis model:

Energy:

Ferromagnetic coupling (δ>0): 
Two ground states, all spins either aligned or anti-aligned with the parameter ξi

Antiferromagnetic coupling (δ<0):

Many ground states are possible. Hamiltonian represents the “number partitioning” problem

● Can we anneal the ions into the solution of this NP-hard problem?

Exact diagonalization for 6 ions and phonons:

Solution obtained on experimentally feasible time scales

Semiclassical simulation for 22 ions and phonons: 

Annealing time scales as 

2   6   7   9   12   13   17  20 

2   6   7   9   12   13   17  20 

2+9+12+20 -6 -7-13 -17  = 0

2   6   7   9   12   13   17  20 

6+17+20 -2 -7 -9 -12-13  = 0

T. Grass, D. Raventos, B. Julia-Diaz, C. Gogolin, M. Lewenstein
Nat. Commun. 7,  11524 (2016)
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Phase transition in the number partitioning problem

[T. Joerg, F. Krzakala, J. Kurchan, A.C. Maggs, PRL 101, 147204 (2008)][T. Joerg, F. Krzakala, J. Kurchan, A.C. Maggs, PRL 101, 147204 (2008)]
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Classical algorithm for number partitioning
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Complexity of the problem
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Statistical physics analysis of the problem

Cost function:
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Statistical physics analysis of the problem

Cost function:

Partition function:
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Statistical physics analysis of the problem

Cost function:

Partition function:

Without the absolute value, life would be easy:
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Statistical physics analysis of the problem

Cost function:

Partition function:

Use Dirac 
function:
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Statistical physics analysis of the problem

Rewriting it:
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Statistical physics analysis of the problem

Rewriting it:

Laplace method / Steepest descent method / Saddle-point method:
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Statistical physics analysis of the problem

Rewriting it:

Laplace method / Steepest descent method / Saddle-point method:

Saddle points:

Numbers are discrete!
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Statistical physics analysis of the problem

Result:
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Statistical physics analysis of the problem

Partition
Function:

Free energy:

Thermal 
energy:
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Statistical physics analysis of the problem

Partition
Function:

Free energy:

Entropy:
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Statistical physics analysis of the problem

Free energy:

Entropy:
● extensive entropy
● exponentially many 

solutions
● “easy” phase

● negative entropy?
● not at finite 

temperature
● There is no absolute 

zero → Energy will 
remain finite!

● “hard” phase
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Statistical physics analysis of the problem

Free energy:

Entropy:
● extensive entropy
● exponentially many 

solutions
● “easy” phase

● negative entropy?
● not at finite 

temperature
● There is no absolute 

zero → Energy will 
remain finite!

● “hard” phase

Minimum 
temperature 
and thermal 
energy when
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Comparison with numerical results
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Comparison with numerical results
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Summary

1) Simulated annealing:
● Simple sampling algorithm (Metropolis)
●  Slow changes in control parameter (“temperature”)

2) Quantum annealing:
●  Adiabatic quantum time evolution
●  Control parameter: transverse field
●  Fails when small gaps occur along the annealing path

3) Analysis of the number partitioning problem:
“Entropy” becomes negative → phase transition to “hard” 
phase. “Absolute” zero at finite temperature/energy.
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