Optimization and physics: the hardness of a problem and annealing strategies to solve it

JQI Summer School Lecture on July 27th, 2018

Tobias Grass (JQI)

Vacations coming :-)

In 1954: Write a breakthrough paper! (linear programming algorithm)

Reprinted from JOURNAL OF THE OPERATIONS RESEARCH SOCIETY OF AMERICA Vol. 2, No. 4, November, 1954 Printed in U.S.A.

SOLUTION OF A LARGE-SCALE TRAVELING-SALESMAN PROBLEM*

> G. DANTZIG, R. FULKERSON, AND S. JOHNSON The Rand Corporation, Santa Monica, California (Received August 9, 1954)

It is shown that a certain tour of 49 cities, one in each of the 48 states and Washington, D. C., has the shortest road distance.

Vacations coming :-)

In 1954: Write a breakthrough paper! (linear programming algorithm)

Reprinted from JOURNAL OF THE OPERATIONS RESEARCH SOCIETY OF AMERICA Vol. 2, No. 4, November, 1954 Printed in U.S.A. SOLUTION OF A LARGE-SCALE TRAVELING-SALESMAN **PROBLEM*** G. DANTZIG, R. FULKERSON, AND S. JOHNSON The Rand Corporation, Santa Monica, California (Received August 9, 1954) It is shown that a certain tour of 49 cities, one in each of the 48 states and Washington, D. C., has the shortest road distance. Link: http://www.math.uwaterloo.ca/tsp/

In 2018: Ask Siri!

Description

Even the best algorithms fail (i.e. take too long) when the problem size gets bigger

World record:

85,900 connections Took 136 cpu-years to calculate Design of computer chip

NP-hard: Problems at least as hard as NP-complete problems, but not necessarily in NP

NP-complete: "Hardest" problems in NP (to which any NP problem can be mapped in polynomial time)

NP: Decision problems whose positive answer can be *verified* on a deterministic computer in polynomial time, that is equivalent to,

decision problems which can be solved on a non**deterministic** computer in polynomial time.

P: Decision problems solvable on a deterministic computer in polynomial time

Open problem:

 $NP \supseteq P$ or NP = P?

(Note the 1 million dollar reward for a proof!)

Examples for NP-hard problems:

- Traveling salesperson
- Number partitioning
- Exact cover
- Spin glasses
 - . . .

Journal of Physics A: Mathematical and General

Journal of Physics A: Mathematical and General > Volume 15 > Number 10

On the computational complexity of Ising spin glass models

F Barahona Show affiliations

F Barahona 1982 J. Phys. A: Math. Gen. 15 3241. doi:10.1088/0305-4470/15/10/028

1) Simulated annealing:

- Cooling a problem to its solution
- Example: traveling salesperson problem
- 2) Quantum annealing:
 - Quantum time evolution to the solution
 - Examples: Spin models, exact Cover
 - Adiabatic theorem, limitations, and workarounds
 - Physical implementations (D-Wave, ions)
 - 3) Phases of a computational problem:

Statistical physics analysis applied to the number partitioning problem

1) Simulated annealing:

- Cooling a problem to its solution
- Example: traveling salesperson problem
- 2) Quantum annealing:
 - Quantum time evolution to the solution
 - Examples: Spin models, exact Cover
 - Adiabatic theorem, limitations, and workarounds
 - Physical implementations (D-Wave, ions)
 - 3) Phases of a computational problem:

Statistical physics analysis applied to the number partitioning problem

Statistical physics:

- Macroscopic behavior can be understood without knowing microscopic state
- Likelihood of a microscopic state *j* is controlled by Boltzmann factors: $p_j = e^{-\frac{E_j}{k_B T}}$
- Thermal averages: $\langle O \rangle_T = \frac{1}{\mathcal{Z}} \sum_j e^{-\frac{E_j}{k_B T}} \langle j | O | j \rangle$

Statistical physics:

- Macroscopic behavior does not depend on the microscopic state
- Likelihood of a microscopic state *j* is controlled by Boltzmann factors: $p_j = e^{-\frac{E_j}{k_BT}}$

• Thermal averages:
$$\langle O \rangle_T = \frac{1}{\mathcal{Z}} \sum_j e^{-\frac{E_j}{k_B T}} \langle j | O | j \rangle$$

Metropolis sampling to evaluate average:

- (1) Start with a random microscopic state *j*, and evaluate its energy E_j
- (2) Follow some (well chosen) rules to modify the state, leading to a new state k with energy E_k
- (3) If $E_k \leq E_j$: Always accept new configuration: $p_{j \to k} = 1$ Else: Accept with probability $p_{j \to k} = e^{-\frac{(E_k - E_j)}{k_B T}}$
- $\blacktriangleright \quad \text{Detailed balance:} \quad p_j \ p_{j \to k} = p_k \ p_{k \to j}$
- Ergodicity: path between any pair of configurations?

Simulated annealing

Intuition:

• Heating and slow cooling can reduce defects in a material

Implementation:

- Use Metropolis algorithm for sampling in configuration space
- Energy ↔ Cost function
- Temperature as control parameter:
 - High temperature: explore gross "energy" landscape
 - Lower temperature: force the algorithm into good solution

13 May 1983, Volume 220, Number 4598

Optimization by Simulated Annealing

S. Kirkpatrick, C. D. Gelatt, Jr., M. P. Vecchi

SCIENCE

Annealing, as implemented by the Metropolis procedure, differs from iterative improvement in that the procedure need not get stuck since transitions out of a local optimum are always possible at nonzero temperature. A second and more important feature is that a sort of adaptive divide-and-conquer occurs. Gross features of the eventual state of the system appear at higher temperatures; fine details develop at lower temperatures. This will be discussed with specific examples.

Simulated annealing in the traveling salesperson problem

Example: 400 cities in 9 clusters

- High-T: find an efficient way to connect clusters
- Low-T: optimize connection within each cluster

Fig. 9. Results at four temperatures for a clustered 400-city traveling salesman problem. The points are uniformly distributed in nine regions. (a) T = 1.2, $\alpha = 2.0567$; (b) T = 0.8, $\alpha = 1.515$; (c) T = 0.4, $\alpha = 1.055$; (d) T = 0.0, $\alpha = 0.7839$.

Simulated annealing in the traveling salesperson problem

Example: 400 cities in 9 clusters

- High-*T*: find an efficient way to connect clusters
- Low-T: optimize connection within each cluster

Simulated annealing typically performs well in finding a good solution, but it usually fails to give the best solution.

Fig. 9. Results at four temperatures for a clustered 400-city traveling salesman problem. The points are uniformly distributed in nine regions. (a) T = 1.2, $\alpha = 2.0567$; (b) T = 0.8, $\alpha = 1.515$; (c) T = 0.4, $\alpha = 1.055$; (d) T = 0.0, $\alpha = 0.7839$.

1) Simulated annealing:

- Cooling a problem to its solution
- Example: traveling salesperson problem

2) Quantum annealing:

- Quantum time evolution to the solution
- Examples: Spin models, exact Cover
- Adiabatic theorem, limitations, and workarounds
- Physical implementations (D-Wave, ions)

3) Phases of a computational problem:

Statistical physics analysis applied to the number partitioning problem

PHYSICAL REVIEW E

VOLUME 58, NUMBER 5

NOVEMBER 1998

Quantum annealing in the transverse Ising model

Tadashi Kadowaki and Hidetoshi Nishimori Department of Physics, Tokyo Institute of Technology, Oh-okayama, Meguro-ku, Tokyo 152-8551, Japan (Received 30 April 1998)

	Simulated annealing (SA)	Quantum annealing (QA)
Dynamics	Master equation	Schroedinger equation
	$\frac{\mathrm{d}}{\mathrm{d}t}P_i(t) = \mathcal{L}_{ij}(t)P_j(t)$	$i\hbar\partial_t\Psi(t) = \mathcal{H}(t)\Psi(t)$
Driving force	Thermal fluctuations	Quantum fluctuations
Control parameter	Temperature (from equilibrium at high T to equilibrium at zero T)	Quantum field strength (from ground state at strong field to ground state at no field)

- Cost function given by the Hamiltonian of a a (classical) Ising model:
- Transverse field to control quantum fluctuations:

$$H = -\sum_{i,j} J_{ij}\sigma_z^i\sigma_z^j - \sum h_i\sigma_z^i$$

$$\mathcal{H}(t) = H + \Gamma(t) \sum_{i} \sigma_x^i$$

Which dynamics, SA vs QA, comes closer/faster to the ground state ?

(I) Ferromagnetic model

 $\Gamma(t) = T(t) \sim 1/\ln(t+1)$

(II) Spin glass model

 $\Gamma(t) = T(t) \sim 1/t$

Results:

- Slow decay: Both SA and QA reproduce stationary states
- Fast decay: QA gets closer to ground state
- QA works particularly well in glassy system

Disordered quantum magnet

25

20

15 H¹⁵ H¹⁰

5

0

0

G

0.1

0.2

Doped material with randomly distributed spins:

 $H_J=-\sum_{i,j}J_{ij}\sigma^i_z\sigma^j_z$ Transverse magnetic field term: $H_t=-\Gamma\sum_i\sigma^i_x$ Phase diagram:

 $LiHo_{0.44} Y_{0.56}F_4$

Disordered Ferromagnet

PM

FM

0.3

В

0.4

T (K)

0.5

0.6

0.7

0.8

Cooling schedule and ac susceptibility (at 15Hz) as a function of time:

J. Brooke, D. Bitko, T. F. Rosenbaum, G. Aeppli Science 284, 779 (1999)

Quantum annealing for Exact Cover Problem

Relation to computer science:

Can quantum annealing solve an NP-hard computational problem?

Example in early proposal: "Exact Cover 3"

- Given N bits {z₁,...,z_N} and M clauses
 Each clause selects three bits {z_i, z_j, z_k}, demanding z_i+z_i+z_k=2
- Is there a bit assignment which satisfies all clauses simultaneously?

Can quantum annealing solve an NP-hard computational problem?

Early proposal: Exact cover.

- Given N bits {z₁,...,z_N} and M clauses.
 Each clause selects three bits {z_i, z_j, z_k}, demanding z_i+z_j+z_k=2.
- Is there a bit assignment which satisfies all clauses simultaneously?

Can quantum annealing solve an NP-hard computational problem?

Early proposal: Exact cover.

- Given N bits {z₁,...,z_N} and M clauses.
 Each clause selects three bits {z_i, z_j, z_k}, demanding z_i+z_j+z_k=2.
- Is there a bit assignment which satisfies all clauses simultaneously?

Can quantum annealing solve an NP-hard computational problem?

Early proposal: Exact cover.

- Given N bits {z₁,...,z_N} and M clauses.
 Each clause selects three bits {z_i, z_j, z_k}, demanding z_i+z_j+z_k=2.
- Is there a bit assignment which satisfies all clauses simultaneously?

• Spin language: $H = \sum_{C} h(C)$ with $h(C_{ijk}) = (\sigma_z^i + \sigma_z^j + \sigma_z^k - 1)^2$ Is the ground state energy E=0 or E>0?

Can quantum annealing solve an NP-hard computational problem?

Early proposal: Exact cover.

- Given N bits {z₁,...,z_N} and M clauses.
 Each clause selects three bits {z_i, z_j, z_k}, demanding z_i+z_j+z_k=2.
- Is there a bit assignment which satisfies all clauses simultaneously?
- Spin language: $H_p = \sum_{C} h(C)$ with $h(C_{ijk}) = (\sigma_z^i + \sigma_z^j + \sigma_z^k 1)^2$ Is the ground state energy E=0 or E>0?

Exponentially many
satisfying assignments
$$\left(\frac{M}{N}\right)_{c} \sim 0.6$$

No satisfying assignment
EASY M
NEASYHARDEASY

• Generate generically hard instances by constructing clauses with unique satisfying assignment (USA)

Annealing schedule: $\mathcal{H}(t) = (1 - \frac{t}{T})H_t + \frac{t}{T}H_p$ with $H_t = B\sum_i \sigma_x^i$ What is the probability of being in the ground state of H_p at time t=T?

Quantum annealing for Exact Cover Problem

Numerical results:

• Success probability:

$$p = |\langle \text{GS of } H_{\text{p}}| \text{State at } t = T \rangle|^2$$

For a given system size N, find runtime T such that p is fixed, e.g., p=1/8

• *T* is found to scale polynomially with *N*

- Averaged over the worst 10%, the probability remains relatively constant with *N*
- Accessible system size too small to make strong claims regarding scalability

Tobias Grass (JQI) JQI Summer School, 07/27/2018

Adiabatic theorem and Landau-Zener problem

Spin-1/2 particle in a time-dependent magnetic field:

$$H(t) = \frac{1}{2}\gamma t\sigma_z + \frac{1}{2}\Delta\sigma_x$$

- Time-dependent Schroedinger equation: $i\hbar \begin{pmatrix} \dot{a}(t) \\ \dot{b}(t) \end{pmatrix} = \frac{1}{2} \begin{pmatrix} \gamma t & \Delta \\ \Delta & -\gamma t \end{pmatrix} \cdot \begin{pmatrix} a(t) \\ b(t) \end{pmatrix}$
- Leads to one second-order differential equation which can be solved exactly
- Probability of excitation during the evolution: $P_{\rm LZ} = e^{-\pi\Gamma^2/2}, \quad \Gamma \equiv \frac{\Delta}{\sqrt{\hbar\gamma}}$
- Adiabatic condition: $\Gamma \gg 1 \Rightarrow \Delta^2 \gg \hbar \gamma$
- The annealing time has to scale as $T \sim rac{1}{\Lambda^2}$

Scaling of the gap in Exact Cover QA Algorithm

Anderson localization makes adiabatic quantum optimization fail

Boris Altshuler, Hari Krovi, and Jérémie Roland PNAS July 13, 2010. 107 (28) 12446-12450; https://doi.org/10.1073/pnas.1002116107

Perturbative expansion:

$$E(\lambda, \mathbf{s}) = E_{\text{cost}}(\mathbf{s}) + \sum_{m=1}^{\infty} \lambda^{2m} F^{(m)}$$

$$E_1(\lambda) - E_2(\lambda) = \sum_{m=2}^{\infty} \lambda^{2m} [F_1^{(m)} - F_2^{(m)}]$$

$$N \gg 1$$
: $F_i^{(m)} \cong \sum_{k=1}^N r_k, \quad r_k = \mathcal{O}(1)$

First-order correction is the same for all configurations

For large N, the coefficients F^(m) behave like sum of random numbers

 $\mathcal{O}(N)$ = leading order: $\Rightarrow |E_1(\lambda) - E_2(\lambda)| \cong \sqrt{N} \sum \lambda^{2m} \sim \sqrt{N} \lambda^4 \stackrel{!}{\sim} 4 \quad \Rightarrow \quad \lambda_{\text{crossing}} \sim N^{-1/8}$ m=2 $m_{\rm f} \sim f({\rm M/N}) {\rm N}$

"spin-flip-distance"

Tobias Grass (JQI) JQI Summer School, 07/27/2018

$$V \gg 1: \quad F_i^{(m)} \cong \sum_{k=1} r_k, \quad r_k = \mathcal{O}(1)$$

+ $\langle F_1^{(m)} - F_2^{(m)} \rangle = 0, \quad \langle (F_1^{(m)} - F_2^{(m)})^2 \rangle$

$$k=1 \\ \Rightarrow \langle F_1^{(m)} - F_2^{(m)} \rangle = 0, \quad \langle (F_1^{(m)} - F_2^{(m)})^2 \rangle = \mathcal{C}$$

 $\Delta \sim \lambda_{\text{crossing}}^{m_{\text{f}}} \sim \exp\{[-f(M/N)N/8]\ln(N/N_0)\}$

• Modify cost function?

Exponentially small gaps have also been seen for other cost functions of similar complexity [T. Joerg, F. Krzakala, J. Kurchan, A.C. Maggs, PRL 101, 147204 (2008)]

• Modify the initial Hamiltonian?

Standard protocol: $\mathcal{H}(t) = (1 - \gamma)H_t + \gamma H_p$ with $H_t = B \sum_i \sigma_x^i$ Modified protocol: $H_t = B \sum_i \mu_i \sigma_x^i$ [E. Farhi, J. Goldstone, D. Gosset, S. Gutmann, H. Meyer, P. Shor, Quant. Inf. Comp. 11, 181 (2011)]

• Make the Hamiltonian non-stoquastic?

Stoquastic: No sign problem. All off-diagonal elements (in z-basis) are positive (e.g. transverse Ising) Introducing terms which render the Hamiltonian non-stoquastic can turn 1st order phase transitions to 2^{nd} order transitions:

Example:

 $\mathcal{H}(\gamma, \lambda) = \gamma H_{\rm p} + (1 - \gamma) \mathbf{H}_{\rm t} + \gamma (1 - \lambda) \mathbf{H}_{\rm XX}$

[H. Nishimori and K. Takada Front. ICT 4:2 (2017)]

Thermal assisted quantum annealing?
 [N. Dickson et al., Nat. Commun. 4, 1903 (2013)]

Experimental realization: D-wave

- Up to 2048 superconducting flux qubits
- Programmable Josephson couplings in blocks of 8 qubits and between blocks (chimera geometry)
- Individual longitudinal fields and global transverse field

$$\mathcal{H}(t) = A(t) \left(\sum_{\langle i,j \rangle} J_{ij} \sigma_z^i \sigma_z^j + \sum h_i \sigma_z^i \right) \\ + B(t) \sum_i \sigma_x^i$$

Does it work? – Maybe!

Output matches expectations [S. Boixo et al., Nature Phys. 10, 218 (2014)]

No clear sign of quantum speedup [T. Ronnow et al., Science Science 345, 420 (2014)]

Alternative platforms: Trapped ions

- Raman spin-flip transition coupled to different phonon modes m •
- Second-order: effective Ising model $H = -\sum_{m} \sum_{ij} \frac{\hbar \Omega^{(i)} \eta_m^{(i)} \Omega^{(j)} \eta_m^{(j)}}{\delta_m} \sigma_z^{(i)} \sigma_z^{(j)}$ Close to a resonance we get a Mattis model: $H = -\text{sign}(\delta) \sum_{ij} \xi^{(i)} \xi^{(j)} \sigma_z^{(i)} \sigma_z^{(j)}$.
- •

Energy: $E(s_1, \cdots, s_N) = -\operatorname{sign}(\delta) \Big(\sum_{s_i=\uparrow} \xi^{(i)} - \sum_{s_i=\downarrow} \xi^{(i)} \Big)^2$

Ferromagnetic coupling ($\delta > 0$):

Two ground states, all spins either aligned or anti-aligned with the parameter ξ_i

Antiferromagnetic coupling ($\delta < 0$):

Many ground states are possible. Hamiltonian represents the "number partitioning" problem

Can we anneal the ions into the solution of this NP-hard problem? . Exact diagonalization for 6 ions and phonons: Solution obtained on experimentally feasible time scales

Semiclassical simulation for 22 ions and phonons: Annealing time scales as $~~ au \propto N^4$

12 13 17 20 9 2+9+12+20 - 6 - 7 - 13 - 17 = 06+17+20 - 2 - 7 - 9 - 12 - 13 = 0

T. Grass, D. Raventos, B. Julia-Diaz, C. Gogolin, M. Lewenstein Nat. Commun. 7, 11524 (2016)

1) Simulated annealing:

- Cooling a problem to its solution
- Example: traveling salesperson problem
- 2) Quantum annealing:
 - Quantum time evolution to the solution
 - Examples: Spin models, exact Cover
 - Adiabatic theorem, limitations, and workarounds
 - Physical implementations (D-Wave, ions)

3) Phases of a computational problem:

Statistical physics analysis applied to the number partitioning problem

Phase transition in the number partitioning problem

PHYSICAL REVIEW LETTERS

VOLUME 81

16 NOVEMBER 1998

NUMBER 20

Phase Transition in the Number Partitioning Problem

Stephan Mertens*

Universität Magdeburg, Institut für Physik, Universitätsplatz 2, D-39106 Magdeburg, Germany [T. Joerg, F. Krzakala, J. Kurchan Reviewe Maggs, 1999, 101, 147204 (2008)]

Theoretical Computer Science

Volume 265, Issues 1–2, 28 August 2001, Pages 79-108

A physicist's approach to number partitioning

Stephan Mertens 😤 🖾

Classical algorithm for number partitioning

Complexity of the problem

$$E = \left|\sum_{j=1}^{N} a_j s_j\right|$$

$$E = \left|\sum_{j=1}^{N} a_j s_j\right|$$
$$Z = \sum e^{-\frac{1}{T}\left|\sum_j a_j\right|}$$

Partition function:

$$Z = \sum_{\{s_j\}} a_j s_j$$
$$Z = \sum_{\{s_j\}} e^{-\frac{1}{T} |\sum_j a_j s_j|}$$

$$E = \left|\sum_{j=1}^{N} a_j s_j\right|$$

Partition function:

$$Z = \sum_{\{s_j\}}^{j=1} e^{-\frac{1}{T} |\sum_j a_j s_j|}$$

Without the absolute value, life would be easy:

$$\sum_{\{s_j\}} e^{-\frac{1}{T}\sum_j a_j s_j} = \sum_{\{s_j\}} \prod_{j=1}^N e^{-\frac{1}{T}a_j s_j}$$
$$= \sum_{s_1=\pm 1} e^{-\frac{1}{T}a_1 s_1} \cdot \sum_{s_2=\pm 1} e^{-\frac{1}{T}a_2 s_2} \cdot \ldots \cdot \sum_{s_N=\pm 1} e^{-\frac{1}{T}a_N s_N}$$
$$= 2\cosh\frac{a_1}{T} \cdot 2\cosh\frac{a_2}{T} \cdot \ldots \cdot 2\cosh\frac{a_N}{T}$$
$$= 2^N \prod_{j=1}^N \cosh\frac{a_j}{T}$$

$$E = \left|\sum_{j=1}^{N} a_j s_j\right|$$

Partition function:

$$\overline{j=1}$$

$$Z = \sum_{\{s_j\}} e^{-\frac{1}{T} |\sum_j a_j s_j|}$$

Use Dirac function:

$$Z = \sum_{\{s_j\}} \int_{-\infty}^{\infty} dx \, e^{-|x|} \, \delta\left(x - \frac{1}{T} \sum_{j=1}^{N} a_j s_j\right)$$

$$\stackrel{\bigstar}{=} \int_{-\infty}^{\infty} dx \, e^{-|x|} \frac{1}{2\pi} \int_{-\infty}^{\infty} d\hat{x} e^{ix\hat{x}} \sum_{\{s_j\}} e^{-i\frac{\hat{x}}{T} \sum_j a_j s_j}$$

$$= 2^N \int_{-\infty}^{\infty} \frac{d\hat{x}}{2\pi} \prod_{j=1}^{N} \cos\left(\frac{a_j}{T}\hat{x}\right) \int_{-\infty}^{\infty} dx \, e^{-|x| + i\hat{x}x} \quad \bigstar$$

$$\bigstar \,\delta(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} d\hat{x} e^{ix\hat{x}}$$

$$\bigstar \quad \int_{-\infty}^{\infty} dx \ e^{-|x| + i\hat{x}x} = \frac{2}{1 + \hat{x}^2}$$

Tobias Grass (JQI) JQI Summer School, 07/27/2018

Rewriting

it:
$$Z = 2^N \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{dy}{\pi} e^{NG(y)} \quad \text{with} \quad G(y) = \frac{1}{N} \sum_{j=1}^N \ln \cos(\frac{a_j}{T} \tan(y))$$
$$= \left\langle \ln \cos(\frac{a}{T} \tan(y)) \right\rangle$$

Tobias Grass (JQI) JQI Summer School, 07/27/2018

$$y = \arctan \hat{x}$$

$$Z = 2^N \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{dy}{\pi} e^{NG(y)} \quad \text{with} \qquad G(y) = \frac{1}{N} \sum_{j=1}^N \ln \cos(\frac{a_j}{T} \tan(y))$$

$$= \left\langle \ln \cos(\frac{a}{T} \tan(y)) \right\rangle$$

Laplace method / Steepest descent method / Saddle-point method:

Rewriting it:

$$\int e^{NG(y)} dx \approx e^{NG(y_0)} \int e^{-\frac{N}{2}G''(y_0)(y-y_0)^2} dy = e^{NG(y_0)} \sqrt{\frac{2\pi}{NG''(y_0)}}$$

$$y = \arctan \hat{x}$$
$$Z = 2^N \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{dy}{\pi} e^{NG(y)} \quad \text{with} \qquad G(y) = \frac{1}{N} \sum_{j=1}^N \ln \cos(\frac{a_j}{T} \tan(y))$$
$$= \left\langle \ln \cos(\frac{a}{T} \tan(y)) \right\rangle$$

Laplace method / Steepest descent method / Saddle-point method:

$$\int e^{NG(y)} dx \approx e^{NG(y_0)} \int e^{-\frac{N}{2}G''(y_0)(y-y_0)^2} dy = e^{NG(y_0)} \sqrt{\frac{2\pi}{NG''(y_0)}}$$

Saddle points:

Rewriting it:

$$G'(y) = \left\langle \frac{a}{T} \tan\left(\frac{a}{T} \tan y\right) \right\rangle \cdot (1 + \tan^2 y) = 0$$
$$y_k = \arctan\left(\frac{\pi T}{\Delta a}k\right) \qquad k = 0, \pm 1, \pm 2, \dots$$
Numbers are discrete!

$$G''(y_k) = \frac{\langle a^2 \rangle}{T^2} \left[1 + \left(\frac{\pi T}{\Delta a}\right)^2 k^2 \right]^2$$

Result:

$$Z \approx 2^{N} \sum_{k} \int_{-\infty}^{\infty} \frac{dy}{\pi} e^{-\frac{N}{2}G''(y_{k})y^{2}} = 2^{N} \frac{\sqrt{2}}{\sqrt{\pi N}} \sum_{k} \frac{1}{\sqrt{G''(y_{k})}}$$

$$\stackrel{\bigstar}{=} 2^{N} \cdot \frac{\Delta a}{\sqrt{\frac{\pi}{2}N} \langle a^{2} \rangle} \cdot \coth \frac{\Delta a}{T}$$

$$\bigstar \sum_{k=0,\pm 1,\dots} \frac{1}{1+(xk)^2} = \frac{\pi}{x} \cdot \coth \frac{\pi}{x}$$

Partition Function: Z

$$= 2^N \cdot \frac{\Delta a}{\sqrt{\frac{\pi}{2}N \langle a^2 \rangle}} \cdot \coth \frac{\Delta a}{T}$$

Free energy:

$$F(T) = -TN\ln 2 + \frac{T}{2}\ln \frac{\pi N \langle a^2 \rangle}{2\Delta a^2} - T\ln \coth \frac{\Delta a}{T}$$

Thermal energy:

$$\langle E \rangle_T = \frac{\Delta a}{\sinh \frac{\Delta a}{T} \cosh \frac{\Delta a}{T}}$$

$$\lim_{T \to 0} \langle E \rangle_T = 0$$

 $\begin{array}{ll} \mbox{Partition} & Z &= 2^N \cdot \frac{\Delta a}{\sqrt{\frac{\pi}{2}N \left\langle a^2 \right\rangle}} \cdot \coth \frac{\Delta a}{T} \\ \mbox{Function:} & F(T) = -TN \ln 2 + \frac{T}{2} \ln \frac{\pi N \left\langle a^2 \right\rangle}{2\Delta a^2} - T \ln \coth \frac{\Delta a}{T} \end{array}$

Entropy:

$$S = N(\kappa_c - \kappa) \ln 2 + \tilde{S}(\frac{\Delta a}{2T}),$$

with

$$\kappa_c = 1 - \frac{\ln\left(\frac{\pi}{6}N\right)}{N 2 \ln 2}$$
$$\kappa = \frac{\ln\frac{3}{\Delta a^2} \langle a^2 \rangle}{N 2 \ln 2}$$
$$\tilde{S}(\frac{\Delta a}{T}) = \ln \coth\frac{\Delta a}{T} + \frac{\Delta a}{T} \frac{\coth^2\frac{\Delta a}{T} - 1}{\coth\frac{\Delta a}{T}}$$

Free energy: $F(T) = -TN\ln 2 + \frac{T}{2}\ln \frac{\pi N \langle a^2 \rangle}{2\Delta a^2} - T\ln \coth \frac{\Delta a}{T}$

Entropy:

$$S = N(\kappa_c - \kappa) \ln 2 + \tilde{S}(\frac{\Delta a}{2T}),$$

with

$$\kappa_c = 1 - \frac{\ln\left(\frac{\pi}{6}N\right)}{N\,2\ln2}$$

$$\kappa = \frac{\ln \frac{3}{\Delta a^2} \left\langle a^2 \right\rangle}{N \, 2 \ln 2}.$$

$$\tilde{S}(\frac{\Delta a}{T}) = \ln \coth \frac{\Delta a}{T} + \frac{\Delta a}{T} \frac{\coth^2 \frac{\Delta a}{T} - 1}{\coth \frac{\Delta a}{T}}$$

- $\kappa < \kappa_{\rm c}$:
- extensive entropy
- exponentially many solutions
- "easy" phase

$$\kappa > \kappa_{\rm c}$$
:

- negative entropy?
- not at finite temperature
- There is no absolute zero → Energy will remain finite!
- "hard" phase

Free energy:
$$F(T) = -TN\ln 2 + \frac{T}{2}\ln \frac{\pi N \langle a^2 \rangle}{2\Delta a^2} - T\ln \coth \frac{\Delta a}{T}$$

Entropy:

$$S = N(\kappa_c - \kappa) \ln 2 + \tilde{S}(\frac{\Delta a}{2T}),$$

with

$$\kappa_c = 1 - \frac{\ln\left(\frac{\pi}{6}N\right)}{N 2 \ln 2}$$
$$\ln\frac{3}{\Delta a^2} \langle a^2 \rangle$$

$$\kappa = \frac{\Delta a}{N 2 \ln 2}$$

$$\tilde{S}(\frac{\Delta a}{T}) = \ln \coth \frac{\Delta a}{T} + \frac{\Delta a}{T} \frac{\coth^2 \frac{\Delta a}{T} - 1}{\coth \frac{\Delta a}{T}}$$
$$T_0 = 2\Delta a \, 2^{N(\kappa - \kappa_c)} = \sqrt{2\pi N \langle a^2 \rangle} \, 2^{-N}$$

Minimum temperature and thermal energy when $\kappa > \kappa_{\rm C}$:

$$\langle E_1 \rangle = T_0 = \sqrt{2\pi N \langle a^2 \rangle} \ 2^{-N}$$

- $\kappa < \kappa_{\rm c}$:
- extensive entropy
- exponentially many solutions
- "easy" phase

$$\kappa > \kappa_{\rm c}$$
:

- negative entropy?
- not at finite temperature
- There is no absolute zero → Energy will remain finite!
- "hard" phase

Comparison with numerical results

Comparison with numerical results

1) Simulated annealing:

- Simple sampling algorithm (Metropolis)
- Slow changes in control parameter ("temperature")

2) Quantum annealing:

- Adiabatic quantum time evolution
- Control parameter: transverse field
- Fails when small gaps occur along the annealing path

3) Analysis of the number partitioning problem:

"Entropy" becomes negative \rightarrow phase transition to "hard" phase. "Absolute" zero at finite temperature/energy.