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In this series of four introductory lectures, topics at the interface of quantum optics and electronic
materials will be discussed. The first lecture will introduce the concept of bandstructure and k.p
theory. In the second lecture, these concepts will be applied to free optical transitions, and as an
example, I will discuss optical selection rules in Dirac materials. The third lecture will introduce the
concept of excitons, including Dirac excitons in relativistic materials, as well as excitons-polaritons.
As a general framework for treating optical transitions in electronic materials, I will introduce the
semiconductor Bloch equations in the fourth lecture.

Preamble

“One shouldnt work on semiconductors, that is a filthy mess; who knows whether any semiconductors exist.”
(orig. “Über Halbleiter soll man nicht arbeiten, das ist eine Schweinerei; wer weiss, ob es überhaupt Halbleiter gibt.”)

Wolfgang Pauli in September 1931 in a letter to Rudolf Peierls

Scope

The properties of matter can be examined through its interactions with light. A simple example is photoabsorption
of an atom which reveals the energy levels of an atom. In this lecture, we are going to study the interactions
between light and electrons in a solid. A class of solids which is particularly well suited for optical explorations are
semiconductors, as they have a bandgap in the optical range. Typical semiconducting materials include: group IV
elements of the periodic table (Si, Ge), combinations of group III and group V (such as GaAs), or combinations of group
II and group VI (such as CdTe). One interesting application of semiconductors is the fabrication of microstructures
which allow for confining charge carriers (electrons and/or holes) to spaces of reduced dimension: quantum wells
(2D), quantum wires (1D), quantum dots (0D). In recent years, 2-dimensional confinement of electrons has also been
realized in atomically thin materials: graphene (which is a semimetal, e.g. something between a metal, as it has no
bandgap, and a semiconductor, as the density of states at the Fermi energy of the undopped/ungated material is
zero), and transition metal dichalcogenides (TMDs), a compound of two group VI atoms (“chalcogens”: S,Se,Te), and
a transition metal atom (Mo,W). Bulk TMDs are well-known indirect-gap semiconductors, but only in the last ten
years, it has become possible to produce isolated TMD layers. As in graphene, the low-energy behavior of electrons
in the vicinity of the K-point is approximately described by the Dirac equation. In this lecture, we will study how
these materials can be explored through light-matter interactions.

I. PERIODIC LATTICE

A. Definitions and basic concepts

As a starting point, we introduce a model for the solid: a perfect crystal of ions, generating a periodic electric
potential for the electrons. The Hamiltonian for the electrons is given by:

H =
1

2m
p2 + V (r) with V (r + Rn) = V (r). (1)

The vectors Rn are lattice vectors, i.e. Rn =
∑
i niai, with ni being integers, and ai being the vectors spanning the

unit cell of the lattice (primitive vectors).
If the primitive vectors can be taken as the vectors connecting neighboring ions, the ions form a Bravais lattice.

From every atomic position the lattice looks the same. We may also say that basis of the lattice is monoatomic.
In other cases, the vectors connecting neighboring atoms are not spanning a lattice. An important example is the
honeycomb lattice, which is particularly relevant for this course as it is the origin of the effective Dirac behavior in
graphene and monolayer TMDs. We can still understand the structure of such an arrangement as a (Bravais) lattice,
but now the basis element of the periodic structure is a two-atom basis, see Fig. 1.

The (Bravais) lattice can be characterize through its point group symmetries which leads to a total of 5 different
lattice types in 2D, and 14 types in 3D. Point group symmetries are those coordinate transformations which leave



2

FIG. 1: Atoms forming a honeycomb structure are not the lattice points of a Bravais lattice. However, by connecting the
centers of each hexagon, the structure is seen to be a Bravais lattice with a rhombic unit cell (“hexagonal lattice”). Each unit
cell contains two atoms, so the basis of the lattice is biatomic.

FIG. 2: Examples of some cyclic and dihedral groups. Taken from Landau/Lifshitz Vol. 3 “Quantum Mechanics”, Chapter
XXII.

(at least) one point unchanged. In 2D, the relevant transformations are rotations and reflections. There are different
ways of denoting the different point groups. Here, we will use the Schoenflies notation: If there are only rotations
about an axis, we have the cyclic group denoted by letter Cn. The index n is an integer which specifies the rotation
angles 2π/n under which the system is invariant. If in addition to the n-fold rotation axis, we also have mirror planes,
this is indicated through an index h or v:
Cnh: There is a mirror plane perpendicular to the rotation axis.
Cnv: There are n mirror planes which contain the rotation axis (and which are transformed into each other by the

rotation).
Another important point group is the dihedral group, denoted by the letter Dn. As the cyclic group, it contains an

n-fold rotational axis, but on top of this there are n two-fold rotational axes perpendicular to the n-fold axis. If there
is a horizontal mirror symmetry, this is again expressed through an index h. Together with the two-fold rotations, this
leads automatically to n vertical reflections. If there are additional vertical reflection planes which do not coincide
with the two-fold rotation axis, this is denoted by an index d. Examples for cyclic and dihedral groups are illustrated
in Fig. 2.

The point group symmetries of a lattice may be analyzed by looking at a unit cell, but there is not a unique choice
of unit cell. Best suited for the analysis of point group symmetries is the Wigner-Seitz cell. It is the collection of
points which are closest to a lattice point. It is obtained by connecting a lattice point with all neighboring lattice
points, and drawing perpendicular intersecting lines (2D) / planes (3D) through the centers of all interconnecting
lines.

B. Bloch theorem

The Bloch theorem is the following statement: For a periodic Hamiltonian, such as Eq. (1), the eigenfunctions are
of the form:

ϕk(r) = eik·ruk(r), where uk(r) = uk(r + Rn). (2)
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FIG. 3: The Wigner-Seitz cell of the hexagonal lattice is a hexagon. In a honeycomb arrangment of atoms (cf. Fig. 1), the
Wigner-Seitz cell just goes through the 6 atoms forming a hexagon. If all atoms are the same, the point group symmetry is D6h

(graphene), with 6 two-fold in plane rotation axes indicated in the figure on the right. If the lattice is on top of a substrate, the
two-fold rotational symmetry is lost, but the axes, together with the 6-fold axes, define mirror planes. The point group is C6v.
On the other hand, if the two atoms of the basis are different (as in hexagonal Boron Nitride, or as in TMDs), the symmetry
is reduced D3h.

The functions uk(r) are called Bloch functions.
Proof: Consider a lattice translation Tn: Tnϕk(r) = ϕk(r+Rn). The Hamiltonian is invariant under this transfor-

mation: T−1
n HTn = H. Thus, from the Schroedinger equation we have:

ϕ∗k(r)T−1
n HTnϕk(r) = Ek|Tnϕk(r)|2 = Ek|ϕk(r + Rn)|2, (3)

but also

ϕ∗k(r)T−1
n HTnϕk(r) = ϕ∗k(r)Hϕk(r) = Ek|ϕk(r)|2. (4)

So the wave function amplitudes must be the same on lattice points:

|ϕk(r)|2 = |ϕk(r + Rn)|2. (5)

Thus, the functions ϕk must have the property:

ϕk(r + Rn) = tnkϕk(r) with |tnk| = 1. (6)

As tnk is the eigenvalue of the lattice translation, from the property Tn+m = TnTm it must also follow that

tnktmk = t(n+m)k (7)

The conditions for tnk are met by the ansatz

tnk = eik·Rn . (8)

It is then seen that a function which is periodic with the lattice [i.e. a Bloch function uk(r)] multiplied with eik·r

provides a solution to Eqs. (6-7), which proves the Bloch theorem.

C. Reciprocal lattice

As seen above, the wave vector k defines the eigenvalue tn of ϕk under generic lattice translations Tn, tn = eik·Rn .
But this form of the tn immediately implies that there is a whole lattice of k-points which are equivalent. This lattice
is called the reciprocal lattice. It is spanned by reciprocal lattice vectors G, which are defined through the condition:

eik·Rn = ei(k+G)·Rn , (9)

or simply

G ·Rn = 2πN. (10)
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Vectors G which fulfill this condition can be written in terms of a basis bi, G =
∑
imibi, for which the following

relation holds:

ai · bj = 2πδij . (11)

The reciprocal basis vectors can then be expressed in terms of the primitive lattice vectors as:

bi = 2π
aj × ak

ai · (aj × ak)
. (12)

The unit cell spanned by the bj is called the Brillouin zone.

D. k · p theory

The Schroedinger equation for an electron reads

Hϕk,λ(r) =

(
− ~2

2m
∇2 + V (r)

)
ϕk,λ(r) = Ek,λϕk,λ(r), (13)

where λ denotes different solutions (i.e. energy bands). Now we apply the Bloch theorem: ϕk,λ(r) = eik·ruk,λ(r). We
use the relation

∇2ϕk,λ(r) = −k2ϕk,λ(r) + 2ieik·rk · ∇uk,λ(r) + eik·r∇2uk,λ(r) = eik·r(∇+ ik)2uk,λ. (14)

to obtain a Schroedinger equation for the Bloch functions:(
− ~2

2m
(∇+ ik)2 + V (r)

)
uk,λ(r) = Ek,λuk,λ, (15)(

− ~2

2m
∇2 +

~
m
k · p + V (r)

)
uk,λ(r) =

(
Ek,λ −

~2k2

2m

)
uk,λ. (16)

This expression is useful if we know the solutions to the Schroedinger equation in one special point k0:(
− ~2

2m
∇2 +

~
m
k0 · p + V (r)

)
uk0,λ(r) = H0uk0,λ = εk0,λuk0,λ. (17)

We define H1 = ~
m (k−k0) ·p, which can be taken as a small perturbation in the vicinity of k0, and εk,λ = Ek,λ− ~2k2

2m .
In lowest order, the energy is given by

εk,λ = εk0,λ +
∑
η 6=λ

〈λ|H1|η〉〈η|H1|λ〉
εk0,λ − εk0,η

. (18)

Here |η〉 denotes the state corresponding to ϕk0,η. The matrix element 〈λ|H1|η〉 = ~
mk · pλη, where pλη = 〈λ|p|η〉.

Since pλλ = 0, the lowest energy correction is second order. To first order, the energy band λ in the vicinity of k0 is
given by

|k, λ〉 = |λ〉+
~
m

∑
η 6=λ

pλ,η
εk0,λ − εk0,η

|η〉. (19)

Let’s assume that only two bands, λ = ±, are relevant at the Fermi surface. We write 〈+|p|−〉 =
∑
i piei. From Eq.

(18), we find the energies of the two bands to be given by:

Ek,± = Ek0,± +
~2

2m
k2 ± ~2

2m

∑
i,j

2kikjp
∗
i pj

m∆
= Ek0,± +

~2

2

 1

m

∑
i,j

(
δij ±

2p∗i pj
m∆

) kikj , (20)

where ∆ = εk0,+ − εk0,− denotes the energy gap at k0. The term in the square bracket can be viewed as an effective
mass tensor : (

1

meff

)
ij

=
1

m

(
δij ±

2p∗i pj
m∆

)
(21)

In isotropic cases (e.g. cubic symmetries), the effective mass becomes a scalar quantity. For the lower band (valence
band) the effective mass can become negative (holes). For the higher band (conduction band), the effective mass of
the electrons is often significantly lower than the free electron mass.
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a. Kane model and beyond For group IV semiconductors, as well as III-V or II-VI compounds, the outer shell is
populated by sp3 orbitals. The conduction band at k = 0 (Γ-point) consists of an s-electron, while three p-electrons
form a degenerate valence band. In terms of angular momentum quantum numbers:

|s〉 = |l = 0,m = 0〉, (22)

|px,y,z〉 = |l = 1,m = ±1, 0〉. (23)

The selection rule 〈l,m|p|l′,m′〉 ∝ δl,l′±1δm,m′ dictates the form of the k · p Hamiltonian:

Hk·p = H0 +H1 =

E0 0 0 Ak
0 E1 0 0
0 0 E1 0
Ak 0 0 E1

 (24)

So in this model (Kane model), two bands at E1 are not modified, e.g. their effective mass will be positive, while (for
these bands to be valence bands), they should be negative. To cure this failure, one has to take into account (i) spin-
orbit coupling which splits off one valence band, (ii) the effect of other than the sp3 bands. An effective model, which
takes into account the effect of other bands through three phenomenological parameters, is the Luttinger model. This
model takes into account 4 valence bands at j = ±3/2 (eigenvalue to the operator L + S): |3/2,±3/2〉, |3/2,±1/2〉.
The spin-orbit coupling splits the bands at j = 1/2 to lower energies. The four valence bands are degenerate at
the Γ-point, but split into two degenerate pairs away from k = 0, the heavy holes (mj = ±3/2) and the light holes
(mj = ±1/2).

b. TMDs Let us next apply the k.p method to TMD monolayers [see also Kormanyos et al., Phys. Rev. B 88,
0454416 (2013)]. From first-principle calculations (DFT), it is known that the VB is dominated at the ±K points by
orbitals dx2−y2 and dxy of the transition metal atom. In the CB, the band edge is dominated by dz2 . To improve
the model, let us look for other orbitals which may be important. To this aim, the analysis of symmetries and group
theory are important tools.

Symmmetry: The group of the wave vector (i.e. the group of symmetry operations which leaves the wave vector
unchanged) is C3h for K, and D3h for Γ. In the following, we will restrict ourselves to the K-point. C3h is an Abelian
group containing the idenity, threefold rotations, a horizontal mirror plane, and the corresponding rotation-reflections.
It has 6 (one-dimensional) irreducible representations (IRs): A′, A′′, E′1, E

′
2, E

′′
1 , E

′′
2 . As a reminder: a representation

of the group is a set of functions which is mapped onto itself under the group transformations. If this set can be divided
into smaller sets with this property, the representation is “reducible”. In contrast, irreducible representations cannot
be divided into smaller representations. The transformation behavior of an irreducible representation (described by
the character table) is characteristic of the representation, and representations with identical characters are equivalent.

The VB is found to transform as A′, whereas the CB transforms as E′1. Thus, just as the in-plane momentum,
both CB and VB are even under σh. States which are odd under σh do not couple to them on the k.p level. The
next bands with the even horizontal mirror plane symmetry are CB+2 and VB-3 (both transforming as E′2). The
corresponding four-band model is given by, with real-valued parameters γ:

Hk.p =

εv,K γ3q− γ2q+ γ4q+

γ3q+ εc,K γ5q− γ6q−
γ2q− γ5q+ εv−3,K 0
γ4q− γ6q+ 0 εc+2,K

 (25)

Here, we have defined q± = kx±iky and p± = px±ipy. The form of the k.p Hamiltonian is dictated by the symmetries.
For instance, under C3, we have the transformation of p± given by:

C†3p±C3 = e∓i2π/3p±, (26)

whereas states from the IRs transform as

C3|ΨA′〉 = |ΨA′〉, (27)

C3|ΨE′
1
〉 = e+i2π/3|ΨE′

1
〉, (28)

C3|ΨE′
2
〉 = e−i2π/3|ΨE′

2
〉. (29)

(30)

From this, we get, for instance, 〈c|p+|v〉 = 〈c|C3C
†
3p+C3C

†
3 |v〉 = e−i4π/3〈c|p+|v〉, and thus 〈c|p+|v〉 = 0.
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Let us only mention that the same Hamiltonian, with q+ and q− exchanged, is found at the −K point. So, one
may also define q± = kx ± iτky, with τ = ±1 being a valley index.

Finally, as we are interested in the physics of the VB and CB, we may reduce this 4-band Hamiltonian to a 2-band
model via the Loewdin partitioning technique. This technique takes into account the effect of the other levels in a
perturbative way. The lowest order simply neglects the other bands, and we get the massive Dirac equation:

H
(1)
k.p =

(
εv,K γ3q−
γ3q

+ εc,K

)
(31)

The second-order contribution, with m,m′ ∈ {1, 2}, is writen as

H
(2)
m,m′ =

1

2

∑
l∈{3,4}

Hm,lHl,m′

[
1

Em − El
+

1

Em′ − El

]
. (32)

This leads to the following qualitatively distinct terms:

H
(2)
k.p =

(
αq2 0
0 βq2

)
+ κ

(
0 q2

+

q2
− 0

)
. (33)

The first term takes into account the fact that electrons and holes have different effective masses. The second term
destroys the isotropy of the Dirac model, and accounts for the trigonal warping (= trigonal shape of isoenergy contours)
which is due to the C3 crystal structure. The parameters γ3, α, β, κ and the band-edge energies can be evaluated using
Kohn-Sham orbitals (not so good results), or fitted to the DFT band (good results - even better when also one cubic
term in k is taken into account, e.g. third-order Loewdin).

So far, spin-orbit coupling has been neglected. The simplest way to take it into account is within the atomic
approximation, by adding a term:

HSOC = λL · S. (34)

Here, we only mention the following observations related to spin-orbit coupling:

• Strong spin-orbit coupling of the dx2−y2 and dxy orbitals in the transition metal leads to strong spin-orbit
coupling effects at the band edge of the valence band (in contrast to the VB band edge, and in contrast to
graphene which is lacking strong spin-orbit coupling).

• Since the operator L± = Lx ± iLy is odd under σh, it is not enough to take into account only the four bands
used above, but also the other bands in between with odd σh symmetry should be taken into account.

• After Loewdin partitioning, to lowest order the Hamiltonian has the form:

H = γ3(τkxσx + kyσy) +
εc,K − εv,K

2
σz − λτ

σz − 1

2
sz, (35)

where the σ-matrices take into account the band degree of freedom, whereas sz represents the spin degree of
freedom.

E. Tight-binding approximation

The validity of the k.p method tends to be limited to a restricted region of k-space. We finalize this section by
briefly discussing an alternative approach, the tight-binding approximation. The idea behind this method is that the
electrons remain close to the atomic sites. Therefore, let Φλ(r−Rl) be a solution to the atomic Schroedinger equation
(i.e. with V (r−Rl) being the potential of a single atom at point Rl):(

−∇2

2m
+ V (r−Rl)

)
Φλ(r−Rl) ≡ HlΦλ(r−Rl) = ελΦλ(r−Rl). (36)

The tight-binding ansatz (which also fulfills the Bloch theorem!) is given by:

Ψk,λ(r) =
1√
V

∑
n

eik·RnΦλ(r−Rn). (37)
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Let us now approximately evaluate the band energies Ek,λ from this ansatz:

Ek,λ =

∫
dDrΨ∗k,λ(r)HΨk,λ(r)∫
dDrΨ∗k,λ(r)Ψk,λ(r)

. (38)

We approximately have
∫

dDrΦ∗λ(r+Rm)Φλ(r+Rn) = δm,n, so the denominator is evaluated as N/V , i.e. the inverse
of the size of a unit cell. The numerator we write in the following way:

N =
1

V

∑
n,m

eik·(Rn−Rm)In,m, where

In,m =

∫
dDr Φ∗λ(r−Rm)

Hn +
∑
l 6=n

V (r−Rl)

Φλ(r−Rn) =

= ελδn,m +
∑
l 6=n

∫
dDr Φ∗λ(r−Rm)V (r−Rl)Φλ(r−Rn). (39)

And we write:

Ek,λ =
1

N

∑
n,m

(In,nδn,m + In,n±1δn±1,m + . . . ) (40)

The different integrals In,m, i.e. on-site shift, nearest-neighbor overlaps, next-nearest neighbor overlaps, etc. have to
be computed numerically.

a. Example: We conclude with an example for a TMD (MoS2), as taken from G. Liu et al., Phys. Rev. B 88,
085433 (2013). In this paper a three-band model for TMDs is derived using the tight-binding method. By taking into
account terms up to 3NN-hopping, the model appears to be quantitatively satisfactory within the full Brillouin zone.

As in the section before, symmetry analysis comes into play when setting up the model. The three atomic states to
build the tight-biding wave function are dz2 , dx2−y2 , and dxy. The point group of the system is D3h, and dz2 belong
to the 1D IR A′1, whereas dx2−y2 , and dxy belong to the 2D IR E′. In the following, these two IRs are denoted by
the indext j = 1, 2. A second index µ = 1 (for j = 1) or µ = 1, 2 (for j = 2) denotes the states |Φjµ(r)〉.

The overlap integrals for a given vector R of the molybdenum lattice are:

Ej,j
′

µµ′ (R) = 〈Φjµ(r)|H|Φj
′

µ′(r−R)〉. (41)

Although there are six different lattice vectors connecting nearest neighbors, we need to evaluate this expression only
for one of them. The other overlap integrals are obtained from symmetry properties:

Let R′ = ĝnR with ĝn ∈ D3h ⇒ Ej,j
′
(R′) = Dj(ĝn)Ej,j

′
(R)[Dj′(ĝn)]†, (42)

where Dj(ĝn) is the matrix for the transformation ĝn acting on the jth IR of the group D3h.

In fact, instead of trying to evaluate the integrals Ej,j
′

µµ′ (R), one may take their value as a fitting parameter. In this

way, symmetry helps to keep the number of fitting parameters as low as possible (6 instead of 36 for every hopping
order + 2 for the on-site energies).

By expanding the three-band tight-binding model at the K-point and applying Loewdin partitioning to reduce it
to a two-band model, one obtains in lowest order the massive Dirac equation.

II. BAND-TO-BAND TRANSITIONS OF FREE ELECTRONS

A. Minimal coupling

Classical light-matter interactions are described by the Lorentz force

F = q(E + v ×B), (43)

with E,B being the electric and magnetic field, and v the velocity of a particle with charge q. Invoking scalar and
vector potentials Φ and A, the Lorentz force is obtained from an Euler-Lagrange equation, F = (−∇+ d

dt∇v)U with
a potential:

U = q(Φ− v ·A). (44)
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To check this explicitly, we may choose to work in the Coulomb gauge:

∇ ·A = 0 ⇒ Φ = 0 (in absence of charges) ⇒ E = − ∂

∂t
A, B = ∇×A. (45)

Also note that d
dtA = ∂

∂t + (v · ∇)A, and ∇(v ·A) = v × (∇×A) + (v · ∇)A.

The corresponding Lagrangian L = mv2/2− U yields a Hamiltonian H = p · v − L, with

p =
dL

dv
= mv + qA, (46)

so we explicitly have:

H =
1

2m
(p− qA)2 + qΦ. (47)

In the Coulomb gauge, Φ = 0 and we have the “minimal coupling” obtained by replacing p→ p− qA which can be
done within both classical and quantum theories.

B. Electric dipole approximation

The form of light-matter interaction from the minimal coupling description is:

HLM = − q

2m
(A · p + p ·A) +

q2

2m
A2. (48)

For a plane-wave, we have

A(r, t) = A0ε̂e
i(k·r−ωt) + c.c., (49)

where ε̂ is the polarization, ω the frequency, and k the wave vector of the light field. We may expand this in k:

eik·r = 1 + ik · r + . . . , (50)

and by dropping all but the first term, we obtain what is known as the dipole approximation. Essentially, this
approximation is justified by the fact that (typically) the light field varies on scales λ much larger than the length
scale relevant for the electron dynamics (e.g. lattice constants in a crystal).

Under this approximation, the A2 term in Eq. (48) becomes a constant and can be dropped. In the Coulomb
gauge, we also have p ·A = A · p. With this, we have:

HLM = −2qA0

m
ε̂ · p cos(ωt). (51)

Now we use the following which is valid for a general single-particle Hamiltonian H0:

p = − im
~

[r,H0]. (52)

We get:

HLM =
2iqA0

~
ε̂ · [r,H0] cos(ωt). (53)

Having in mind electrons in a crystal, eigenstates of H0 are denoted |λ,k〉 at energies Eλ,k. Thus we find

〈λ,k|HLM|λ′,k′〉 =
2iqA0

~
(Eλ′,k′ − Eλ,k)〈λ,k|r|λ′,k′〉 cos(ωt) (54)

Since E(t) = −∂tA(t), we have A0 = i/(2ω)E0, so we can also write

〈λ,k|HLM|λ′,k′〉 = E0ε̂ cos(ωt) · q〈λ,k|r|λ′,k′〉Eλ
′,k′ − Eλ,k

~ω
= E(t) · dλk,λ′k′

Eλ′,k′ − Eλ,k
~ω

. (55)

Here, dλk,λ′k′ = q〈λ,k|r|λ′,k′〉 is the electric dipole moment between the states |λ′,k′〉 and |λ,k〉. For a resonant
absorption process, we have Eλ′,k′ − Eλ,k = −ω, and the light-matter Hamiltonian takes the familiar form:

HLM = −d ·E(t), (56)

where d = qr.
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C. Linear response, susceptibility, oscillator strength, f-sum rule

To determine the behavior of an electron in an optical field, we need to solve the time-dependent Schrödinger
equation:

i~∂tΨ(r, t) = (H +HLM)Ψ(r, t), (57)

with H being the crystal Hamiltonian from Eq. (1), and HLM being the light-matter interaction, for which, for
simplicity reasons, we assume the dipole approximation, HLM = −d ·E(t).

The crystal eigenfunctions ϕλ,k(r) at energies Eλ,k provide an orthonormal basis to expand the function Ψ(r, t):

Ψ(r, t) =
∑
λ,k

aλ,k(t)e−iEλ,ktϕλ,k(r). (58)

The coefficients aλ,k(t) are defined through a set of coupled first-order differential equations:

i~ȧλ,k(t) = −E(t) ·
∑
λ′,k′

dλk,λ′k′e−i(Eλ′,k′−Eλ,k)taλ′,k′(t). (59)

One can solve this set of equation iteratively in different orders of E. The zero-order “solution” a
(0)
λ,k is given by the

initial conditions, which are then plugged into the r.h.s. of Eq. 59:

i~ȧ(1)
λ,k(t) = −E(t) ·

∑
λ′,k′

dλk,λ′k′ei(Eλ′,k′−Eλ,k)ta
(0)
λ′,k′(t). (60)

Integrating these equations yields the linear response of the crystal electron to the optical field.
Let us assume that the system is initialized (in the infinite past t → −∞) in an eigenstate at k = k0 and λ = λ0.

Within linear response approximation, the amplitude to be in another level |λ,k〉 at a later time t is given by:

aλ,k(t) = − 1

i~

∫ t

−∞
dt′ E(t′) · dλk,λ0k0e

−i(Eλ0,k0
−Eλ,k)t′ . (61)

To evaluate this integral, we write

E(t) = lim
γ→0

∫
dω

2π
E(ω)e−iωteγt, (62)

where the infinitesimal γ insures convergence. We obtain:

aλ,k(t) = −dλk,λ′k′

~

∫
dω

2π
E(ω)

e−i(ω+∆λ′k′,λk)t

ω + ∆λ′k′,λk + iγ
. (63)

The wave function reads

Ψ(r, t) = e−iEλ0,k0
t

ϕλ0,k0
(r)−

∑
λ,k

dλ0k0,λk

~
ϕλ,k(r)

∫
dω

2π
E(ω)

e−iωt

ω + ∆λ0k0,λk + iγ

+O(E2). (64)

With this, let us evaluate the electronic polarization along the polarization vector of the field ε̂, and the corresponding
susceptibility. For the moment, we take these quantities to be microscopic, i.e. derived for a single electron. The
macroscopic version of these quantities can simply be obtained by summing over all the microscopic polarizations or
microscopic susceptibilities. We will explicitly carry out this sum a little later, after we have convinced ourselves that
the dipole matrix element is diagonal in k. The microscopic polarization is defined as

P(t) =

∫
dr Ψ∗(r, t)(d · ε̂)Ψ(r, t), (65)

which to linear order in E reads:

P(t) = −
∑
λ,k

|ε̂ · dλ0k0,λk|2

~

∫
dω

2π

[
E0(ω)

e−iωt

ω + ∆λ0k0,λk + iγ
+ c.c.

]
!
=

∫
dω

2π
P(ω)e−iωt. (66)
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Using the fact that E∗0 (ω) = E0(−ω), we can use the above equation to determine the linear susceptibility χ(ω):

P(ω) = χ(ω)E0(ω) ⇒ χ(ω) = −1

~
∑
λ,k

|ε̂ · dλ0k0,λ,k|2
(

1

ω + ∆λ0k0,λk + iγ
− 1

ω −∆λ0k0,λk + iγ

)
. (67)

We can interpret this expression as a sum over various susceptibilities from various harmonic oscillators at resonance
frequency ω0 ≡ ∆λ0k0,λk/~, i.e. between level |λ0k0〉 and any other level. The susceptibility of a harmonic oscillator
with mass m0 and resonance frequency ω0 reads:

χH.O.(ω) = − e2

2m0ω0

(
1

ω − ω0 + iγ
− 1

ω + ω0 + iγ

)
. (68)

So by interpreting each electronic transition as an oscillator, each transition contributes to the total susceptibility
with a corresponding oscillator strength fλ0k0,λk such that χ(ω) =

∑
k,λ fλ0k0,λk χH.O.. So the oscillator strength is

given by:

fλ0k0,λk =
2m0

e2~
|ε̂ · dλ0k0,λk|2∆λ0k0,λk. (69)

To simplify the notation, let us in the following drop the index k, and choose coordinates such that ε̂ = x̂. From Eq.
(69), we have ∑

λ

fλ0,λ =
2m0

~
〈λ|x|λ0〉〈λ0|x|λ〉(Eλ − Eλ0). (70)

With |λ〉 being eigenfunctions of H, we have:

〈λ0|x|λ〉(Eλ − Eλ0
) = −1

~
〈λ0|[H,x]|λ〉, (71)

and

〈λ|x|λ0〉(Eλ − Eλ0) =
1

~
〈λ|[H,x]|λ0〉, (72)

so we have ∑
λ

fλ0,λ = −2m0

~2
〈λ0|[H,x]x|λ0〉 =

2m0

~2
〈λ0|x[H,x]|λ0〉. (73)

It must follow that ∑
λ

fλ0,λ =
m0

~2
〈λ0|[x, [H,x]]|λ0〉. (74)

Since [x, [x,H]] = [x, i~m0
px] = ~2

m0
, we obtain the f -sum rule:∑

λ

fλ0,λ = 1. (75)

In words: The strength of all dipole transitions of a free carrier is a constant.

D. Dipole selection rules

We have seen that, within the dipole approximation, the light-matter Hamiltonian is given by HLM(t) = −d ·E(t),
where the dipole moment d for a transition from λ′k′ to λk is given by

dλ′k′,λk = e〈λ′k′|r|λk〉 =
1

Eλk − Eλ′k′
〈λ′k′|[r, H]|λk〉 =

i

m(Eλk − Eλ′k′)
〈λ′k′|p|λk〉. (76)
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So the same matrix element and the same selection rules which are relevant for the k.p theory also determine the
optical dipole transitions.

Making the Bloch ansatz

ϕλk(r) = 〈r|λk〉 =
1√
V
eik·ruλk(r), (77)

we obtain

〈λ′k′|p|λk〉 =
1

V

∫
dDr e−i(k

′−k)·ru∗λ′k′(r)(~k + p)uλk(r). (78)

Now we split the integral over the full space into an integral over a unit cell and a sum over lattice sites, and use the
periodicity of the Bloch functions:

〈λ′k′|p|λk〉 =

N∑
n=1

e−i(k
′−k)·Rn

N

∫
cell

dDr
e−i(k

′−k)·r

vcell
u∗λ′k′(r)(~k + p)uλk(r). (79)

The sum yields δk′,k, so the electron momentum is conserved. This is a consequence of the dipole approximation
which essentially sets the photon momentum to zero (in comparison to the electron momentum). The exponential
term then vanishes from the unit cell integral, and due to the orthonormality of the Bloch function, the k disappears.
We have:

〈λ′k′|p|λk〉 = δk′,kpλ′k,λk ≈ δk′,kpλ′,λ, (80)

where in the last step we disregard the dependence of the momentum operator on k, e.g. we set pλ′,λ = pλ′0,λ0 (i.e.
lowest order k.p theory).

First, we use this result to evaluate the macroscopic polarization and macroscopic susceptibility. We simply take
the microscopic results from the previous section, Eqs. (66) and (67), and replace

∑
k dλ0k0,λk by dλ0k0,λk0

= dλ0,λ.
If we make a two-level approximation, we can also remove the sum in λ, and the transition dipole is simply dvc. If
the thermal probability of a level k being occupied in the valence (conduction) band is fkv ( fkc ), the macroscopic
polarization/suscetibility is given by summing over all k and weighting with (fkv − fkc):

P(ω) = E0(ω)
ε̂ · dvc

~
1

ω + ∆k + iγ
(fkv − fkc) . (81)

Second, we derive the dipole selection rules. They are determined by the symmetries of the bands. For a light
field with a fixed polarization ε̂, we need to evaluate the components ε̂ · pλ′,λ to see if, for the given polarization, the
transition is dipole-allowed or not. For instance, for circularly polarized light we have ε̂σ = ex + iσey, so we need to
look at pxλ′λ + σipyλ′λ = pσλ′λ.

Example: Fundamental transition in TMD monolayer (i.e. direct transitions at ±K-point).
From the discussion of the k.p theory, we recall that at the ±K-point the point group symmetry is C3h with six

1D IRs. The conduction band is essential given by the |dz2〉 orbital of the transition metal atom, which transforms

as E′1. The valence bands are given by (|dx2−y2〉 ± i|dxy〉)/
√

2, and thus transform as A′ at the K-point, and E′2 at
the −K point. The transformation properties of these IRs in combination with the transformation properties of p±
have dictated the form of the k.p Hamiltonian in the τK-point:

Hτ
k.p =

(
∆/2 γkτ
γk−τ −∆/2

)
=

(
∆/2 γkeiτΦk

γke−iτΦk −∆/2

)
(82)

with kτ = kx + iτky. Exactly the same considerations which lead to the form of Hτ
k.p also imply

〈c, τ |p+(ex + iey) + p−(ex − iey)|v, τ〉 ∼ 〈c, τ |pτ (ex + iσey)|v, τ〉. (83)

So for the dipole matrix element corresponding to pσ to be non-zero, σ has to match with the valley index τ . Or,
in other words, a transition due to a circular polarization σ can only occur in valley τ = σ. That means that the
circular polarization of the light can be used to address one of the two valleys. For this reason, TMDs are interesting
materials in the context of “valleytronics”.

It is interesting and easy to go beyond this lowest level description which is strictly valid only at the ±K points.
The winding of the Bloch function around the ±K points is then seen to have an impact onto the selection rules
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which is relevant for excitonic transitions (to be discussed in the next lecture). The solutions of the Dirac equation
Hτφ±,k = ±Ekφ±,k are of the form:

φ+,k =

(
cos(θk/2)

eiΦk sin(θk/2)

)
, φ−,k =

(
e−iΦk sin(θk/2
− cos(θk/2)

)
, (84)

So 〈φ+,k|p+|φ−,k〉 ∼ − cos2(θk/2), whereas 〈φ+,k|p−|φ−,k〉 ∼ e−2iΦk sin2(θk/2). While the p+ transition is much
stronger (k is small!), it has no dependence on the angular part of k. It therefore leads to transitions which conserve
angular momentum. Contrarily, the weak p− obtain an angular momentum dependence due to the winding of the
Bloch functions. References: Pu Gong et al. PRB 95, 125420 (2017). Ting Cao et al. PRL 120, 087402 (2018).
Xiaoou Zhang et al., PRL 120, 0777401 (2018).

E. Fermi’s golden rule

Fermi’s golden rule provides a measure for the transition probability between eigenstates of an unperturbed Hamil-
tonian H0 due to a (potentially time-dependent) perturbation H1(t). The transition rate Γi→f is given by:

Γi→f =
2π

~
|〈f |H1(t)|i〉|2δ(Ef − Ei − ω), (85)

assuming that there is a single state at Ei and a final states at Ef , and ω being the frequency of the sinusoidal
perturbation. It is straightforward to dervie this rule from time-dependent Schroedinger equation.

H|Ψ(t)〉 = i~
∂

∂t
|Ψ(t)〉. (86)

We assume that H = H0 + H1 exp(iωt), and expand Ψ(t) in the eigenbasis of H0. The dynamics of the coefficients
ak(t) is governed by

i~
dak(t)

dt
=
∑
n

〈k|H1|n〉an(t) exp[i(Ek − En − ~ω)/~], (87)

We linearize (with respect to the (weak!) perturbation) this set of equation by replacing an(t) (which at t > 0
depends on H1) by an(0) (which does not depend on H1). Since we are interested in transitions from level i, we have
an(0) = δn,i. We can then immediately integrate the differential equation:

i~ak(t) = 2〈k|H1|i〉eiω
′t/2 sinω′t/2

ω′
, (88)

where ω′ = Ek/~− Ei/~− ω. From this, we get

Γi→k =
d

dt
|ak(t)|2 =

2|〈k|H1|i〉|2

~2

sinω′t

ω′
. (89)

For small enough ω′t, one can replace sin(ω′t)/ω′ by t, so the transition amplitude is linear in time.
If an isolated initial state is coupled to a continuum, we may ask for the transition probability as a function of the

driving frequency ω. In the above expression, we replace 〈k| by 〈E|ρ(E), with ρ(E) being the density of states, and
integrate in E (or in ω′ = E/~− Ei/~− ω). For the δ-function, there is the following identity:

δ(x) = lim
ε→0

sin(x/ε)

πx
, (90)

so at large t we get a πδ(ω′). We end up with

Γ(ω) =
2π|〈Ei + ~ω|H1|i〉|2

~
ρ(Ei + ~ω). (91)

III. EXCITONS

In the previous lectures, we considered only non-interacting electrons. This has led to the notion of bandstructure
in the crystal. By coupling to light, we can excite band-to-band transition. They leave an empty state in the valence
band, i.e. a hole, and a filled state in the conduction band, i.e. a particle. Attractive Coulomb interactions between
particle and hole can lead to bound states (excitons) which are the subject of this lecture.
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A. Coulomb interactions and second quantized Hamiltonian

For the Coulomb Hamiltonian in a crystal, we write down a density-density type of interactions in Fourier space.
It consists of three terms: interactions between the electrons, interactions between the nuclei, interactions between
electrons and nuclei.

HC =
1

2

∑
q

Wq (ρ−q,elρq,el + ρ−q,ionρq,ion + 2ρ−q,elρq,ion) . (92)

We note that this expression includes a self-interactions which we may exclude at a later point.
Let us first discuss the Fourier coefficients of the Coulomb potential, Wq. They depend on the dimension of the

system. The simplest case is for 2D, as we can do the Fourier transformation straightforwardly:

Wq =
1

ε

∫
dr eiq·r/r =

1

ε

∫
dr

∫
dφeiqr cosφ =

2π

ε

∫
drJ0(qr) =

2π

εq
. (93)

In 3D, the Fourier integral
∫

dr eiq·r 1
r does not converge, but we may apply a little trick. We look at a Yukawa-

type of potential, 1
r e
−γr, which vanishes faster than 1/r, and thus converges. Physically, this is a screened Coulomb

potential, and we can (after Fourier transforming) take the limit of zero screening, γ → 0. We get Wq ∼ q−2.
In 1D, the Coulomb potential is pathological, as it has a short-range divergence. It can be remedied if we think of

a 1D system as a 3D system which has been frozen along two directions (e.g. the wave functions have no dynamics
in these coordinates, but are just some envelope functions). We integrate the potential with the envelope functions
over these frozen directions to obtain an effective 1D potential. This quasi-1D potential is free from the divergence
which a true 1D Coulomb potential would have. In real space, such quasi-1D potential has the form 1/(r + γR).

The charge densities of electrons and nuclei are expressed in the following way

ρq,el = −|e|
V

N∑
i=1

e−iq·ri and ρq,ion =
|e|N
V

δq,0. (94)

The expression for the electrons charge density follows from a distribution of N discrete charges at positions ri. Since
we don’t want to consider the nuclei positions as degrees of freedom, we take their charge density as a homogeneous
background. It is made of N positive charges (equal to the number of electrons), so in total there is charge neutrality.
With this, the ion-electron and ion-ion interactions contribute only at q = 0, but exactly in such a way that together
with the electron-electron interactions at q = 0 all terms at q = 0 cancel. That’s very lucky, because the divergence
of Wq at q = 0 is removed from the Hamiltonian:

HC =
e2

2

∑
i,j,q6=0

Wqe
iq·(ri−rj). (95)

This expression also makes it evident where the self-energy comes in: it corresponds to terms with i = j.If we exclude
the self-energy (by excluding the terms with i = j), we arrive at the jellium model :

HC =
1

2

∑
q6=0

Wq(L6ρ−q,eρq,e − e2N). (96)

Here we have re-expressed everything in terms of densities, and the second term comes from the exclusion of terms
with j = i.

As we now go from single-particle to few- or even many-particle physics, it is convenient to introduce second
quantized expressions. In second quantization, particles are described by fields. The field operator Ψ̂†s(r) creates an
electron in spin state s at position r. We can expand the field operator in any single-particle basis, e.g. a basis given
by the bands in the crystal:

Ψ̂s(r) =
1√
V

∑
λ,k

âλ,k,se
ik·ruλ,k,s(r), (97)

where aλ,k,s annihilates an electron of spin s in band λ at wave vector k. Obviously, this is a well-suited expansion,
when we deal with crystal electrons. It also contains, as a special case, the electron gas: Just demand there is only
one band, with Bloch functions uλ,k = 1.



14

The one-particle density operator is given by:

ρ̂(r) = −|e|
∑
s

Ψ̂†s(r)Ψ̂s(r) = −|e|
V

∑
s

∑
λ,λ′

∑
k,k′

u∗λ,k(r)uλ′,k′(r)e−i(k−k
′)·râ†λksâλ′k′s, (98)

which Fourier transforms into

ρ̂q = −|e|
V

∑
s

∑
λ,λ′

∑
k

â†λksâλ′(k+q)sFλλ′(k,k + q). (99)

Here, we have introduced the form factor F defined as

Fλλ′(k,k′) =

∫
cell

dr u∗λk(r)uλ′k′(r). (100)

In general, evaluation of the form factors is a difficult task. However, to lowest order in k.p theory, we replace the
Bloch functions uλk(r) by the function at the band edge uλk0

(r). Then, we obtain Fλλ′(k,k′) = δλ,λ′ .
Let us finally by write all Hamiltonian parts in terms of annihilation/creation operators (suppressing spin for

brevity). Plugging Eq. (97) into Eq. (96), we obtain for the Coulomb interactions:

HC =
e2

2

∑
q 6=0

Wq

∑
{λi}

∑
k,k′

â†λ1k
âλ4,k+qâ

†
λ2,k′ âλ3,k′−qFλ1λ4

Fλ2λ3
−N

 . (101)

By normal-ordering the first term, and replacing the form factors by Kronecker-δs, the second term is cancelled:

HC =
e2

2

∑
q6=0

Wq

∑
λ,λ′

∑
k,k′

â†λkâ
†
λ′,k′ âλ′,k′−qâλ,k+q. (102)

With our choice of basis, the single-electron Hamiltonian reads

H0 =
∑
k,λ

Eλ,kn̂λ,k =
∑
k,λ

Eλ,kâ
†
λ,kâλ,k. (103)

The light-matter Hamiltonian in dipole approximation is given by

HLM = −E0(t)
∑
λ,λ′

∑
k

(
ε̂ · dλ,λ′ â†λ,kâλ′k + h.c.

)
, (104)

where the k-dependence of the interband dipole element dλ,λ′ has been suppressed.

B. Wannier equation

Let us now consider a two-band system (conduction band c, valence band v), and study the dynamics of the
interband polarization:

P(t) ≡
∫

dr 〈Ψ̂(r)†erΨ(r)〉 =
∑
k,k′

〈â†c,kâv,k′〉 × e
∫

dr r u∗ck(r)uvk′(r)eir·(k−k
′) ≈

∑
k

〈â†c,kâv,k〉dcv. (105)

In the second step, we have introduced the interband dipole moment dcv, which may be approximated by a constant
(i.e. no k-dependence). Moreover, the second step takes into account that the integration over space yields a
Kronecker-delta in k.

We see that the polarization is determined by the pair function Pvc,k(t) = 〈a†v,kac,k〉. Its dynamics is governed by

the following Heisenberg equation of motion (lengthy calculation):

~
[
i
d

dt
− (Ec,k − Ev,k)

]
Pvc,k(t) = [nc,k(t)− nv,k(t)]dcv · ε̂E0(t) +

∑
k′,q

Vq

(
〈â†c,k′+qâ

†
v,k−qâc,k′ âc,k〉

+ 〈a†v,k′+qa
†
v,k−qâv,k′ âc,k〉+ 〈a†v,ka

†
c,k′−qâc,k′ âc,k−q〉+ 〈a†v,ka

†
v,k′−qâv,k′ âc,k−q〉

)
(106)



15

For the interactions terms, we do a random phase approximation (RPA), i.e. we decompose the 4-operator product
into 2-operator products, but disregard those decompositions which do not yield a term which is proportional to

nv,k = a†v,kav,k or nc,k = a†c,kac,k. This means that we get terms of the form

〈a†v,ka
†
v,k′−qâv,k′ âc,k−q〉 ≈ Pvc,k−qnv,kδk,k′ , (107)

i.e. terms which are diagonal in k. If we consider nv = 1, such terms can be included in the energy of the band as
self-energies.

There are also non-diagonal terms of the form:

〈a†v,k′+qa
†
v,k−qâv,k′ âc,k〉 ≈ Pvc,knv,k−qδk′+q,k. (108)

These terms will explicitly remain in the equation of motion, which after RPA reads:

~
[
i
d

dt
− (εc,k − εv,k)

]
Pvc,k(t) = [nc,k(t)− nv,k(t)]

dcv · ε̂E0(t) +
∑
q 6=k

V|k−q|Pvc,q

 .
So the equation of motion for the pair function depends on the dynamics of the populations nλ,k(t). We will study
this set of equations of motion later, in the lecture about Semiconductor Bloch Equations. For now, let us assume
that the populations are in thermal equilibrium. Then we write:

nλk = fλ,k =
1

1 + eβ(ελk−EF)
(109)

This approximation leads to a linear resposne theory. With Eq. (109), we then have a single, first-order differential
equation for Pcv(t), which can straightforwardly integrated for free electrons (Vk = 0) via a Fourier transform to
frequency space. We get:

P free
vc (ω) = (fv,k − fc,k)dcv · ε̂E0(ω)

1

~[ω + iδ − (εc,k − εv,k)]
. (110)

In the presence of interactions, the equation reads:

[~(ω + iδ)− (εc,k − εv,k)]Pcv,k(ω) + δfcv,k
∑
q 6=k

V|q−k|Pvc,k(ω) = −δfcv,kdcv · ε̂E0(ω). (111)

In the following, we set the population difference δfcv,k = fv,k−fc,k to 1, i.e. we consider an unexcited semiconductor.
Within the effective mass approximation, we may write

εc,k − εv,k = Egap +
~2k2

2µ
, (112)

where µ is the reduced mass, µ−1 = m−1
c −m−1

v , and Egap denotes the bandgap energy. Remind that the positive
effective mass of the holes is −mv.

Now it is convenient to transform into real space. Replace fk = (1/L)D
∫

drf(r)eik·r, and integrate/sum in k. Note
that ∫

dk k2Pvc,k = (1/L)D
∫

dk

∫
dr k2Pvc(r)eik·r = (1/L)D

∫
dk

∫
dr Pvc(r)(−∇2

r)eik·r

= (1/L)D
∫

dk

∫
dr eik·r(−∇2

r)Pvc(r). (113)

The last step is obtained by partial integration. The terms which appear as a constant in the k-space equation,
dcv · ε̂E0(ω), acquire a Dirac-δ, δ(r), when transformed in real space. Note that this comes from neglecting the
structure of the Bloch functions. For the interaction term, we get:∑

k

∑
q 6=k

∫
dr

∫
dr′ V (r)ei(k−q)·rPvc,ke

iq·r′ ∼
∑
k

∫
dr eik·rV (r)Pvc(r). (114)
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So the equation we get in real space reads:[
~(ω + iδ)− Egap +

~2∇2
r

2µ
+ V (r)

]
Pvc(r) = −dvc · ε̂E0(ω)δ(r)L3. (115)

For E0 = 0, this equation is homogeneous, but in the presence of an electric field it is an inhomogeneous differential
equation. In such case, it is common to first solve the homogeneous equation, and expand the solution of the
inhomogeneous equation in the homogeneous solutions. The homogeneous part is the Wannier equation. Let’s write
ω = Egap + Eν , and replace Pvc(r) by Ψν(r), an electron-hole wave function. We get:

−
(
~2∇2

2µ
+ V (r)

)
Ψν(r) = EνΨν(r). (116)

That is essentially the equation for hydrogen atom, so the relevant units for length and energy are the Bohr radius
a0 and the Rydberg Ry. They are given by:

Ry =
~2

2µa2
0

, a0 =
~2ε

e2µ
. (117)

As compared to the Rydberg energy and the Bohr radius in the context of the hydrogen atom (free electron in vacuum),
here we have to consider the reduced mass given by the effective band masses (for instance in GaAs about an order
of magnitude smaller than the electron rest mass), and a modified electric constanst due to a dielectric (εd = 12.8
in GaAs). So the smaller mass and the larger dielectric constant lead to an increase of the Bohr radius, roughly two
orders of magnitude, and a decrease of the Rydberg roughly three orders of magnitude. Instead of Ry = 13.6eV , we
have Ry = 4meV in GaAs.

The solution of the Wannier equation is obtained by diving ∇2
r in a radial and an angular part. The angular part

is solved immediately by spherical harmonic Yl,m(φ, θ) in 3D, or simply an exponential eimφ in 2D. The energies Eν
are fully determined by the radial part of the wave function (i.e. on this level we have no fine structure). As we
also know from the hydrogen problem, there are two types of solution: The better known solutions are the ones at
negative energy, which are discrete bound states (i.e. the different orbitals 1s, 2s, 2p, 3s, 3p, 3d,...). But there are
also solutions at positive energy, i.e. the ionization continuumn.

The bound states provide a possibility to resonantly excite the system at an energy below the bandgap. These
resonances are given by a Rydberg series, as it is known from atomic physics:

En = −Ry 1

n2
in 3D, (118)

En = −Ry 1

(n+ 1/2)2
in 2D. (119)

C. Optical properties

Explicit expression for optical properties of the material are obtained by solving the inhomogeneous equation of
motion, i.e. Eq. (115).

After obtaining the homogeneous solutions Ψν(r) of the Wannier equation, we write

Pvc(r) =
∑
ν

bνΨν(r), (120)

which we insert into the inhomogeneous Eq. (115). We multiply by Ψ∗µ(r) and integrate over r, in order to obtain an
equation for the coefficients bµ:

bµ = −
d · ε̂E0(ω)LDΨ∗µ(0)

~(ω + iδ)− Egap − Eµ
. (121)

So from this expression we immediately see that the pair function is only determined by exciton solutions which vanish
at r = 0, due to the dipole approximation and neglection of band structure. It is easy to relate the pair function
to the optical polarization and the optical susceptibility, P(ω) =

∑
k(Pcv,kdcv + c.c.) = χ(ω)ε̂E(ω). Explicitly, we

obtain:

χ(ω) = −2|dcv|2
∑
µ

|Ψµ(0)|2
[

1

~(ω + iδ)− Egap − Eν
− 1

~(ω + iδ) + Egap + Eν

]
. (122)
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FIG. 4: Sketch of absorption vs. frequency for 2d semiconductor: Discrete absorption lines in the band gap due to exciton
bound states (1s, 2s, 3s, with spacing given by Rydberg series, and quickly decaying height (Elliott formula). Sommerfeld
enhancement of the absorption continuum. Taken from: Haug and Koch, “Quantum Theory of the Optical and Electronic
Properties of Semiconductors”, 2nd ed. (2004).

The second term is non-resonant, so it is often neglected. From this expression, one can also derive an expression
for the absorption coefficient. By plugging in the wave functions, one obtains the so-called Elliott formula. Without
writing it down, let us just mention that Elliot formula tells us that absorption consists of a series of sharp lines
∼ δ(ω− (Egap−En)), which rapidly decrease in height (∼ n−2 in 3D, (n+ 1/2)−3 in 2D), followed by the continuum
part above the bandgap energy. This continuum part can be compared to the absorption coefficient which one would
obtain for free electrons, and the so-called Coulomb enhancement (or Sommerfeld enhancement) is found.

D. Excitons in TMDs

Although the framework discussed above is very general, at certain points approximations/assumptions were made,
which actually depend on the concrete material. The discussion so far is valid for “conventional” semiconductor
systems.

The main things which need to be reconsidered in the context of Dirac materials are the following:

• The term proportional to ∇2 in the Wannier equations stems from band energies assumed to have a quadratic
dispersion. For gapped Dirac material, this assumption is still correct, but one needs to change in the context
of graphene.

• The interaction potential has been taken as a bare Coulomb potential. However, in a 2D system one should take
into account that electromagnetic fields are not confined to the planar system, but also go through a dielectric
medium surrounding the electronic system. The Keldysh potential is suited to take into account the effect of
dielectric environment:

V (r) =
πe2

2εr0
[H0(r/r0)]− Y0(r/r0)] or Vq =

2πe2

εq

1

1 + r0q
. (123)

Here, H0 and Y0 are Struve and Bessel functions of the second kind, and r0 is material-specific screening
parameter, and the dielectric constant ε = 4πε0εd also depends on the 2D material and its environment. A
reference on this choice of potential is: Cudazzo, Tokatly, and Rubio. PRB 84 0855406 (2011). Asymptotically,
the Keldysh potential goes like 1/r for r →∞, but as log(r) for r → 0.

One effect which is due to this potential is the splitting of 2s and 2p states, with 2p being at lower energy (i.e.
stronger bound excitons).



18

• No matter whether the Coulomb or the Keldysh potential is used to describe interactions, the band structure of
the crystals generally leads to further modifications of the effective interactions. They are taken into account by
the form factors Fλ,λ′ , see Eq. (100). We have set these form factors to one (i.e. effective mass approximation
assuming that electrons are like free particles), but in a Dirac material the electrons are described by Dirac
spinors, so the form factors actually play a role. Therefore, in Eqs. (109) and (111), we have to replace V|k−q|
by V|k−q|Fcc(k,k− q)Fvv(k− 1,k).

With these form factors, the winding of the Bloch spinor around ±K are taken into account, and reflect in a
splitting of the otherwise degenerate 2p+ and 2p− levels.

• For the inhomogeneous part in Eqs. (109) or (111), proportional to the dipole moment between the two bands,
we have neglected any k-dependence. This leads to a δ(r) in real space, restricts the excitonic states which are
optically bright to the s-orbitals. However, we have seen that the dipole matrix in a Dirac material has two
contributions: one which depends only on k, and a second (weaker) one which also has angular dependence on k
(again, due to the winding of the Bloch spinors!). Within a single valley, these two contributions correspond to
opposite circular polarization of the light. But also in the case of fixed circular polarization, both contributions
coexist, but stem from opposite valleys (spin-orbit coupling which lifts the degeneracies between valleys may
allow for individually suppressing one or the other contribution!)

IV. SEMICONDUCTOR BLOCH EQUATIONS

In this lecture, we will reconsider the equation of motion for the band polarization, which we already studied in the
context of free electron transitions as well as excitons (i.e. electron transitions in the presence of Coulomb interactions).
But in contrast to our earlier approaches, now we will avoid the approximations which restrict the dynamics to linear
response. This will lead to a set of coupled equations, known as the semiconductor Bloch equations.

A. Electron-hole system

We start with introducing the concept of hole. In many circumstances, it is convenient to map the electronic
annihilation and creation operators in the valence band onto holes:

h†k,s ≡ av,−k,−s, e†k,s ≡ a
†
c,k,s (124)

i.e. the annihilation of a VB electron with momentum −k and spin −s is equivalent to the creation of a hole at
momentum k and spin s.

Let us consider a few Hamiltonian terms under this electron-hole transformation:∑
k

Ev,ka
†
v,kav,k =

∑
k

Ev,kh−kh
†
−k =

∑
k

Ev,k(1− h†−kh−k) = E0 +
∑
k

Ẽh,kh
†
khk, (125)

∑
k,k′

∑
q6=0

Vqa
†
v,k+qa

†
v,k′−qav,k′av,k =

∑
k,k′

∑
q6=0

Vqh−k−qh−k′+qh
†
−k′h

†
−k =

∑
k,k′

∑
q 6=0

Vq

(
h†k′h

†
khk+qhk′−q − 2h†khk

)
,

(126)∑
k,k′

∑
q6=0

Vqa
†
c,k+qa

†
v,k′−qav,k′ac,k =

∑
k,k′

∑
q6=0

Vqe
†
k+qh−k′+qh

†
−k′ek = −

∑
k,k′

∑
q 6=0

Vqe
†
k+qh

†
k′−qhk′ek (127)

So in the single-particle energy, the transformation just leads to an additional constant term E0 which we may
neglect. The interactions in the valence band give rise to an exchange interaction −

∑
q,k Vqnh,k, which we may take

into account in the band energy of the holes:

Ẽh,k → Eh,k = Ẽh,k −
∑
q

Vq. (128)

Importantly, the interactions between bands appear with the opposite sign, because they now reflect attraction
between the negative charges in the conduction band and the positively charged holes in the valence band.
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The total electron-hole Hamiltonian, in the presence of a dipole coupling, reads:

H(t) =
∑
k

(
Ec,ke

†
kek + Eh,kh

†
khk − E0(t)ε̂ · dcve†kh

†
−k

)
+

1

2

∑
k,k′

∑
q6=0

Vq

(
e†k+qe

†
k′−qek′ek + h†k+qh

†
k′−qhk′hk − 2e†k+qh

†
k′−qhk′ek

)
(129)

We define the following correlators:

ne,k(t) = 〈e†kek〉, nh,k(t) = 〈h†−kh−k〉, Pk(t) = 〈h−kek〉. (130)

The minus signs at the indices of the hole operators take into account that nh,k + ne,k remains constant during a
direct interband excitation.

B. Equations of motion (SBE)

As we already did (partly) in the lecture on excitons, we now derive Heisenberg equations of motion for the pair
correlations and the occupations:

i~
d

dt
〈O〉 = 〈[O,H(t)]〉. (131)

This leads to:

d

dt
Pk =− i (Ee,k − Eh,k)Pk −

i

~
(ne,k + nh,k − 1)ε̂ · dcvE0(t)

− i

~
∑
k′

∑
q 6=0

Vq

[
〈e†k+qh−k+qek′ek〉 − 〈e↔ h〉

+ 〈h−ke†k′−qek′ek−q〉 − 〈e→ h〉
]
. (132)

and

d

dt
ne,k =− 2

~
Im [ε̂ · dcvE0(t)P ∗k ]

+
i

~
∑
k′

∑
q6=0

Vq

[
〈e†ke

†
k′−qek−qek′〉 − 〈k→ k + q〉

〈e†kek−qh
†
k′−qhk′〉 − 〈k→ k + q〉

]
. (133)

The equation for nh,k is of the same form (essentially with e and h exchanged).
Again we proceed by splitting the 4-operator products into products of 2-operator products, and explicitly keep

only the mean-field / Hartree-Fock / RPA terms, i.e. those where at least one 2-operator product is an occupation
number (i.e. diagonal):

d

dt
Pk = − i

~
(Ee,k − Eh,k)Pk −

i

~
(ne,k + nh,k − 1)

ε̂ · dcvE0(t) +
∑
q6=k

V|k−q|Pq

+
∂Pk

∂t

∣∣∣∣∣
scatt

, (134)

and

d

dt
ne,k = −2

~
Im


ε̂ · dcvE0(t) +

∑
q6=k

V|k−q|Pq

P ∗k
+

∂ne,k
∂t

∣∣∣∣∣
scatt

, (135)

and

d

dt
nh,k = −2

~
Im


ε̂ · dcvE0(t) +

∑
q6=k

V|k−q|Pq

P ∗k
+

∂nh,k
∂t

∣∣∣∣∣
scatt

. (136)
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The last term in each of these equations, the “scattering” term, may take into account the scattering terms which are
beyond mean-field, or other dissipative terms. We note that, on the mean-field level, this set of equations is closed,
i.e. it fully determines the dynamics of the mean-field system. We can further simplify the notation by introducing a
generalized Rabi frequency :

ωR,k =
1

~

ε̂ · dcvE0(t) +
∑
q6=k

V|k−q|Pq

 . (137)

With this, the equations of motion are written compactly in the form known as semiconductor Bloch equations:

d

dt
Pk = − i

~
(Ee,k − Eh,k)Pk − i(ne,k + nh,k − 1)ωR,k +

∂Pk

∂t

∣∣∣∣∣
scatt

, (138)

and

d

dt
ne,k = −2

~
Im {ωR,kP ∗k}+

∂ne,k
∂t

∣∣∣∣∣
scatt

, (139)

and

d

dt
nh,k = −2

~
Im {ωR,kP ∗k}+

∂nh,k
∂t

∣∣∣∣∣
scatt

. (140)

These equations determine the optical properties of semiconductors. They are valid in various regimes (low- or high-
excitation, quasi-equilibrium or ultrafast regime, linear or non-linear). Applications of these equations include the
description of pump-probe experiments and wave-mixing spectroscopy, high-harmonic generation, linear or non-linear
response of excitons, etc.

Often one is interested in how light propagates through a crystal. Also in this case, the semiconductor Bloch
equations determine the response of the crystal to the light, but in addition one may use the crystal polarization P as
a source term to Maxwell equations. In this case, semiconductor Bloch equations and Maxwell’s wave equation have
to be solved self-consistently:

∂2E

∂t2
− c2

n2
0

∆E = −4π
∂2P

∂t2
, (141)

with n0 the refractive index of the unexcited crystal.

C. Application of the SBEs: Non-linear response of excitons

Without the scattering terms the semiconductor Bloch equations are diagonal in k, and with this, formally equivalent
to the Bloch equations describing a two-level system. The complicated mixing of wave vectors due to interactions is
included, in a very simple way, within the generalized Rabi frequency and within the effective masses (band energies
containing self-exchange energy).

The Bloch equations of a two-level system read:

i
d

dt
P = εP − (1− 2n)

d21

~
E(t), i

d

dt
n = −1

~
(d21E(t)P ∗ − c.c.). (142)

Here, P = 〈a†1a2〉, n = n2 = 〈a†2a2〉 = 1− n1, ε = E1 − E2.
These equations have a conserved quantity:

K = (1− 2n)2 + 4|P |2. (143)

Choosing as initial conditions the unexcited crystal, P = 0 and n = 0, we have K = 1, or

n =
1

2

(
1±

√
1− 4|P |2

)
. (144)
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If the field is switched on adiabatically, only the minus sign can be realized. In the low-excitation regime, P � 1, we
find by expansion in P :

n = |P |2 +O(|P |4). (145)

We can immediately map this result onto the coherent semiconductor Bloch equations: ne,k = nh,k = |Pk|2.
With this, the equation of motion for Pk becomes formally independent from ni,k. If we take this relation between

ni,k and |Pk|2 into account also in the self-interaction terms in the energies Ei,k, given by −
∑

q 6=0 Vqni,k−q, the
equation of motion becomes:

d

dt
Pk =− i

~

(Egap +
~2k2

2µ

)
Pk −

∑
q 6=0

VqPk−q

+
i

~
(1− 2|Pk|2)ε̂ · dcvE0(t)

+ 2
i

~
∑
q6=k

VqPk−q(P ∗k−q − P ∗k )Pk. (146)

The first term on the rhs is exactly the one which we had already encountered in the Wannier equation. The second
and the third term contain non-linearities in Pk. The second term is the inhomogeneous part of the Bethe-Salpeter
equation, but instead of being a constant dcvE0(t) it is now proportional to (1− 2|Pk|2). This dependence accounts
for phase-space filling : Excitation in the crystal reduce the number of available states, thus decreasing the optical
coupling. The third term, of third order in Pk describes exciton-exciton interactions.

Assuming that the polarization is dominated by the 1s excitonic state ϕ1s(k), we may make the following ansatz:

Pk = Ψ(t)ϕ1s(k). (147)

Inserting in Eq. (146), multiplying with ϕ1s(k), and summing over all k, we get a non-linear Schroedinger equation
for Ψ(t):

i~
d

dt
Ψ =(Egap + E1s)Ψ− ϕ∗1s(r = 0)ε̂ · dcvE0(t) + 2ε̂ · dcvE0(t)|Ψ|2

∑
k

|ϕ1s(k)|2ϕ∗1s(k)

+ 2|Ψ|2Ψ
∑
k

Vq|ϕ1s(k)|2[ϕ∗1s(k)− ϕ∗1s(k − q)]ϕ1s(k − q). (148)

As we already did in the second lecture, non-linear equations can be solved iteratively. That is, we first obtain the
first-order solution Ψ(1) by neglecting the non-linear terms:

(~ω − Egap − E1s)Ψ
(1)eiωt = −ϕ∗1s(r = 0)ε̂ · dcvE0e

iω0t, (149)

⇒ Ψ(1) =
ϕ∗1s(r = 0)ε̂ · dcvE0

∆
, (150)

where ∆ = Egap + E1s − ~ω0.
Then we plug in the solution of the linearized system into the higher-order terms to obtain non-linear corrections:

Ψ(3) =2
|ϕ∗1s(0)|2(ε̂ · dcv)3E3

0

∆3

∑
k

|ϕ1s(k)|2ϕ∗1s(k)

+ 2
ϕ∗1s(0)|ϕ∗1s(0)|2(ε̂ · dcv)3E3

0

∆4

∑
k

Vq|ϕ1s(k)|2[ϕ∗1s(k)− ϕ∗1s(k − q)]ϕ1s(k − q) (151)

This is proportional to the third-order susceptibility, that is, we found a response function beyond linear response.

D. Microscopic model for damping: Boltzmann scattering rates

The scattering terms in the semiconductor Bloch equations may be used to account for relaxation. A simple
phenomeological description could be:

∂dne,k
∂t

∣∣∣∣∣
scatt

=
fe,k − ne,k(t)

Tintra
− ne,k(t)

Tinter
. (152)
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If we sum over all k, the first term on the right-hand side vanishes, so it describes relaxation in the band towards an
equilibrium distribution fe,k. The second term describes recombination.

The microscopic processes which lead to relaxation include carrier-carrier scattering, scattering of carriers with
impurities, or with different phonon modes. Which of these processes is the fastest, depends on the material and on
the amount of excitation. In the low-excitation regime, scattering with LO phonons usually leads to fast relaxation.
A simple microscopic model for such processes is the Froehlich Hamiltonian:

HF =
∑
i=c,v

∑
k,q

~gqa†i,k+qai,k(bq + b−q), (153)

where bq are bosonic operators annihilating one phonon at wave vector q. The coupling strength gq can be related to
the dielectric constant of the crystal, and is typically weak compared to the phonon energy (typically on the order of
20-40 meV). With the phonons being optical, their dispersion is rather flat, and we may assume a constant phonon
energy: HLO =

∑
q ~ω0b

†
qbq.

The scattering terms are then defined as:

∂ρi,j(k)

∂t

∣∣∣∣
scatt

=
i

~
〈[HF, a

†
i,kaj,k]〉. (154)

The rhs can be expressed in terms electron-phonon correlators of the type

Fij,k,q = 〈a†j,k+qai,kbq〉, (155)

and three other correlators obtained by changing bq to b†−q, and changing the index k to index k− q. Physically,
these four correlators describe processes where either the electronic k-level decays into another level under emission
or absorption of a phonon, or there is decay into the k-level under emission or absorption of a phonon, see also Fig.
5.

We now could try to determine the equation of motion for these correlators using the full Hamiltonian (band energies,
Coulomb interactions, light-matter coupling, phonon energy, electron-phonon coupling), but that’s too ambitious. Let
us keep things more simple, and consider only electron-phonon coupling. Moreover, we restrict ourselves to scattering
terms in the diagonal terms (i.e. for the occupations, but not correlations).

It then becomes straightforward to integrate the equation of motion for Fii,k,q(t), and for the other three correlators.
Introducing some notation, with this we can write the scattering terms in the following way:

∂ni,k
∂t

∣∣∣∣∣
scatt

=−
∑
q

∑
σ=±1

σg2
q

∫ t

−∞
dt′ ei(Ei,k+σq−Ei,k−σω0+iγ)(t−t′)

{
Nσni,k(t′)[1− ni,k+σq(t′)]

− [Nσ + 1]ni,k+σq(t′)[1− ni,k(t′)]
}
− {k↔ k− σq} , (156)

where Nσ = (eβ~σω0 − 1)−1 is the number of thermal phonons at frequency σω0. The temporal integral in this
expression keeps memory, so the dynamics is non-Markovian. This is particularly relevant on short time scales,
where the dynamics is called quantum kinetics. On the other hand, if tω0 � 1, the integrand oscillates rapidly, and
we may take out everything but the exponential from the integration. Then the temporal integral just leads to a
Kronecker-delta (energy conservation), and we have obtained Markovian dynamics.

In this Markovian approximation, the scattering rates are known as Boltzmann scattering rates:

∂ni,k
∂t

∣∣∣∣∣
scatt

=− 2π
∑
q

g2
qδ(Ei,k+q − Ei,k − ω0)

[
Nqni,k(1− nik+q)− (Nq + 1)ni,k+q(1− nik)

]
− 2π

∑
q

g2
qδ(Ei,k−q − Ei,k − ω0)

[
(Nq + 1)ni,k(1− nik−q)−Nqni,k−q(1− nik)

]
. (157)

These four terms correspond to the four scattering processes sketched in Fig. 5.



23

FIG. 5: Sketch of four different electron-phonon scattering processes which contribute to the Boltzmann scattering rate. Taken
from: Haug and Koch, “Quantum Theory of the Optical and Electronic Properties of Semiconductors”, 2nd ed. (2004).


