26/01/2018 - ICFO

Semi-synthetic topological quantum matter

Tobias Grass (JQI)

Real matter

with relevant features intrinsic to the material

- Solid state materials with intrinsic electronic properties:
 - semiconductors
 - semimetals
 - metals
 - insulators ...
- Topological features:
 - topological insulators
 - quantum Hall samples (require external field)

Synthetic matter

for which these feature must be generated artificially

- Quantum simulators: usually AMO systems in which light-matter interactions create some features (e.g. atomic gas in lattice potential)
- Topological synthetic matter: artificial gauge fields

Real matter

with relevant features intrinsic to the material

- Solid state materials with intrinsic electronic properties:
 - semiconductors
 - semimetals
 - metals
 - insulators ...
- Topological features:
 - topological insulators
 - quantum Hall samples (require external field)

Semisynthetic matter

Enrich real matter with artificial features

Floquet topological insulator:

PHYSICAL REVIEW B 79, 081406(R) (2009)

Photovoltaic Hall effect in graphene

Takashi Oka and Hideo Aoki

See also experiments at MIT [Gedik group]

- Light-induced superconductivity in cuprates [Cavalleri group]
- This talk: Light-induced quantum Hall phases in graphene

Synthetic Matter

for which these feature must be generated artificially

- Quantum simulators: usually AMO systems in which light-matter interactions create some features (e.g. atomic gas in lattice potential)
- Topological synthetic matter: artificial gauge fields

Outline

Intro: Quantum Hall, Graphene, Light-matter coupling

Part : Optical driving: Controlling FQH phases

Part II: Optical excitations: Flux pump and braiding

Work in collaboration with:

Mohammad Hafezi

(J<mark>QI / NI</mark>ST)

Michael Gullans

(Princeton)

Areg Ghazaryan Pouyan Ghaemi (City College New York)

Quantum Hall Effect

As transport phenomenon: Quantized Hall Resistance

Explanation in terms of topology: Protected Edge States

right-moving skipping orbit

Fractional Quantum Hall Effect and Anyonic Quasiparticles

$$\Psi_{\text{Laughlin}} = \prod_{i < j} (z_i - z_j)^{1/\nu} \mathrm{e}^{-\sum_i |z_i|^2/4}$$
1998

Robert B. Laughlin Prize share: 1/3

Horst L. Störmer Prize share: 1/3

Daniel C. Tsui Prize share: 1/3

Non-Abelian Anyons and

Topological Quantum Computing

Use non-Abelian anyons as robust quantum memory. Quantum information is processed by braiding these anyons.

NO NOBEL PRIZE YET!!

David Thouless

Graphene in magnetic field: Landau levels

Effective Hamiltonian around Dirac point:

$$H_{\xi} = \xi v_{\rm F} (p_x \sigma_x + p_y \sigma_y)$$
$$\xi = \pm \text{ for } K, K'$$

Pauli matrices represent sublattice structure!

In magnetic field:

$$p_i \to \Pi_i = p_i - \frac{e}{c} A_i$$

$$\Pi_x = \frac{\hbar}{\sqrt{2}l_{\rm B}} (a^{\dagger} + a) \text{ and } \Pi_y = \frac{\hbar}{i\sqrt{2}l_{\rm B}} (a^{\dagger} - a)$$

$$H_{\xi} = \xi \sqrt{2} \frac{\hbar v_{\rm F}}{l_{\rm B}} \begin{pmatrix} 0 & a \\ a^{\dagger} & 0 \end{pmatrix}$$

"Standard" Landau level wave functions:

$$a^{\dagger}\varphi_{n,m} = \varphi_{n+1,m}$$

Graphene Landau level wave functions:

$$\begin{split} \Psi_{n=0,m} &= \begin{pmatrix} 0\\ \varphi_{0,m} \end{pmatrix} \text{ and } \Psi_{n\neq 0,m} = \frac{1}{\sqrt{2}} \begin{pmatrix} \varphi_{|n|-1,m}\\ \xi \text{sign}(n)\varphi_{|n|,m} \end{pmatrix} \\ \text{At energies} \quad \epsilon_n &= \text{sign}(n) \frac{\hbar v_{\text{F}}}{l_{\text{B}}} \sqrt{2|n|} \end{split}$$

Features of relativistic Landau levels:

- Spinor wave function
- Spin and valley degeneracy:
 4 bands per energy level
- Particle-hole symmetry
- Non-equidistant energy levels!

See also review article: M. Goerbig, Electronic properties of graphene in a strong magnetic field, Rev. Mod. Phys. 83 1193 (2011)

Interactions between light and Landau levels

Minimal coupling:

Dirac Hamiltonian:

 $H = v_{\rm F}(p_x \sigma_x + p_y \sigma_y) \qquad p_i \to \Pi_i = p_i - \frac{e}{c} A_i \qquad H_{\rm int} \sim \sigma_{\pm} A_{\pm}(x, y, t) + {\rm h.c.}$ $\mathbf{A}(x, y, t) \sim \exp[i(kx - \omega t)] \begin{pmatrix} 1 \\ \pm i \end{pmatrix} + \text{h.c.}$

Light-matter interaction:

Example. circularly polarized plane-wave in x-direction:

rotating frame:
$$(\langle \tilde{n} - 1, \tilde{m} |, \langle \tilde{n}, \tilde{m} |) H_{\text{int}} \begin{pmatrix} 0 \\ |0, m \rangle \end{pmatrix} \sim (\langle \tilde{n} - 1, \tilde{m} |, \langle \tilde{n}, \tilde{m} |) \exp\left[\pm ikx\right] \begin{pmatrix} |0, m \rangle \\ 0 \end{pmatrix}$$

The transition matrix element of non-relativistic Landau levels is given by:

$$\int \mathrm{d}^2 z \,\varphi_{\tilde{n},\tilde{m}}(z)^* \varphi_{n,m}(z) e^{\pm ikx} = \sqrt{\frac{n!m!}{\tilde{n}!\tilde{m}!}} (\pm ik)^{\tilde{n}-n} L_n^{\tilde{n}-n}(k^2) L_m^{\tilde{m}-m}(k^2)$$

It is dominated by: n = n and m = m

Thus, in terms of relativistic LL spinors, the optical selection rules are:

 $\tilde{n} = |n| \pm 1$ and $m = \tilde{m}$

m-selection rule can be modified by using light with OAM, cf. M. Gullans et al., PRB 95, 235439 (2017).

Z. Jiang et al., PRL 98, 197403 (2007)

Part : Optical driving: Controlling FQH phases

Light-Induced Fractional Quantum Hall Phases in Graphene Areg Ghazaryan, Tobias Graß, Michael J. Gullans, Pouyan Ghaemi, and Mohammad Hafezi Phys. Rev. Lett. 119, 247403 – Published 15 December 2017

Coupled Landau levels

$$H_0(t) = \sum_m \left[\frac{\Delta E}{2} \left(c_{n+1,m}^{\dagger} c_{n+1,m} - c_{n,m}^{\dagger} c_{n,m} \right) + \hbar \Omega \left(c_{n+1,m}^{\dagger} c_{n,m} e^{-i(\Delta E - \delta)t} + \text{h.c.} \right) \right]$$

In rotating frame after rotating wave approximation

$$H_0 = \sum_m \left[\frac{\hbar \delta c_{n+1,m}^{\dagger} c_{n+1,m}}{\hbar \Omega c_{n+1,m}^{\dagger} c_{n,m}} + \frac{\hbar \Omega c_{n+1,m}^{\dagger} c_{n,m}}{\hbar \Omega c_{n+1,m}^{\dagger} c_{n,m}} \right] + \text{h.c.}$$

Less is more!

Strong coupling:

Lowest Landau level becomes dressed, but may not change much the physics.

Weak coupling:

Both Landau levels can be occupied: System becomes analogous to a bilayer.

Interactions between coupled LLs

Fractional Quantum Hall Hamiltonian: $H = H_0 + V^{(RWA)}$

 $V_{m_1,m_2,m_3,m_4}^{n_1,n_2,n_3,n_4(\text{RWA})} = \delta_{n_1+n_2-n_3-n_4} V_{m_1,m_2,m_3,m_4}^{n_1,n_2,n_3,n_4}$

Pseudopotential expansion: $V_{m_1,m_2,m_3,m_4}^{n_1,n_2,n_3,n_4} = \sum_{m,M} V_m^{n_1,n_2,n_3,n_4} \langle m_1, m_2 | m, M \rangle \langle m, M | m_3, m_4 \rangle$

Different kinds of interaction processes:

Interactions between coupled LLs

Fractional Quantum Hall Hamiltonian: $H = H_0 + V^{(RWA)}$

 $V_{m_1,m_2,m_3,m_4}^{n_1,n_2,n_3,n_4(\text{RWA})} = \delta_{n_1+n_2-n_3-n_4} V_{m_1,m_2,m_3,m_4}^{n_1,n_2,n_3,n_4}$

Pseudopotential expansion: $V_{m_1,m_2,m_3,m_4}^{n_1,n_2,n_3,n_4} = \sum_{m,M} V_m^{n_1,n_2,n_3,n_4} \langle m_1, m_2 | m, M \rangle \langle m, M | m_3, m_4 \rangle$

Different kinds of interaction processes:

Interactions between coupled LLs

(a) Intra-layer pseudopotentials for different graphene LLs

(b) Inter-layer pseudopotentials when *n*=0 graphene LL is coupled to *n*=1 (red), or *n*=1 is coupled to *n*=2 (blue).

Coupling 1-2 favors singlets at m=0 over triplets at m=1. We thus expect a tendency towards singlet ground states, maybe phases described by a hollow-core model?

LL 0-1 coupling vs. LL 1-2 coupling

<u>S</u>2

Singlet phase

Polarized phase

- Intra-layer Pfaffian
- Inter-layer Pfaffian
- Fibonacci
- (113)-Halperin
- (330)-Halperin
- CF singlet

 $\nu = 1/2$

 $\nu = 2/3$

Laughlin state of holes

Composite Fermi sea (Halperin, Lee, Read)

Polarized phase

- Intra-layer Pfaffian

- Inter-layer Pfaffian
- Fibonacci
- (113)-Halperin
- (330)-Halperin
- CF singlet

 $\nu = 1/2$

Laughlin state of holes

Composite Fermi sea (Halperin, Lee, Read)

-Intra-layer Pfaffian

- Inter-layer Pfaffian

- (113)-Halperin

- (330)-Halperin

- Fibonacci

- CF singlet

Polarized phase

Composite Fermi sea (Halperin, Lee, Read)

 $\nu = 1/2$

Intra Javor Dfaffian

Polarized phase

Laughlin state of holes

Composite Fermi sea (Halperin, Lee, Read)

$\nu = 2/3$	 Inter-layer Pfaffian Fibonacci (113)-Halperin (330)-Halperin - CF singlet
u = 1/2	- Haldane-Rezayi - Jain CF singlet - (331)-Halperin

Polarized phase

- Intra-layer Pfaffian
- Inter-layer Pfaffian
- Fibonacci
- (113)-Halperin - (330)-Halperin - CF singlet

Laughlin state of holes

 $\nu = 1/2$

 $\nu = 2/3$

- Haldane-Rezayi - Jain CF singlet - (331)-Halperin

Composite Fermi sea (Halperin, Lee, Read)

Part I: Optical excitations Flux pump and braiding

<u> π -pulse excitations</u>

Single-particle level: π -pulse flips spin.

In terms of Landau levels: $\varphi_{n,m} \rightarrow \varphi_{n+1,m} = a^{\dagger} \varphi_{n,m}$ Pulse with OAM: $\varphi_{n,m} \rightarrow \varphi_{n+1,m+1} = a^{\dagger} b^{\dagger} \varphi_{n,m}$

Action onto an IQH phase:

<u> π -pulse excitations</u>

Single-particle level: π -pulse flips spin.

In terms of Landau levels: $\varphi_{n,m} \rightarrow \varphi_{n+1,m} = a^{\dagger} \varphi_{n,m}$ Pulse with OAM: $\varphi_{n,m} \rightarrow \varphi_{n+1,m+1} = a^{\dagger} b^{\dagger} \varphi_{n,m}$

Action onto an IQH phase:

<u>π-pulse: Many-body excitations</u>

Action of a pulse on many-body wave function in the LLL:

$$\Psi \to \prod_{i=1}^{N} a_i^{\dagger} b_i^{\dagger} \Psi = \prod_{i=1}^{N} a_i^{\dagger} \left(\prod_{i=1}^{N} z_i \Psi \right)$$

Fidelity of pi-pulse in the presence of Coulomb interactions (*N*=5):

Time evolution in the light field

can be modeled as superposition of initial state, quasihole state, and edge-like excitations:

$$\Psi_{\text{model}}(t) = \sum_{s=0}^{N} \sqrt{\binom{N}{s}} \cos(\Omega t)^{N-s} \sin(\Omega t)^{s} \Psi^{(s)}, \quad \Psi^{(s)} \sim \sum_{\{k_1, \dots, k_s\}} \frac{1}{\sqrt{\binom{N}{s}}} \prod_{j=1}^{s} a_{k_j}^{\dagger} b_{k_j}^{\dagger} \Psi_{\text{L}}.$$

Orthogonality catastrophe: Fine tuning?

Spontaneous emission: Raman pulses

Trapping quasiholes with light

Potential from AC Stark shift of a Gaussian light beam:

Focus on Bose Condensation Phenomena in Atomic and Solid State Physics

Electronic systems: $w \gg l_{\rm B} = 26 \text{nm} / \sqrt{B[\text{ in T}]}$

Can broad potentials still trap quasiholes?

Trapping quasiholes with light

Even for broad potentials, the quasihole state is favored (high overlaps), but the energy gap to other states becomes small:

Moving quasiholes with light

Berry phase for moving the quasihole adiabatically on closed loop: $\gamma = \oint d\xi \langle \Psi(\xi) | \nabla_{\xi} | \Psi(\xi) \rangle$

Berry phase is related to the charge *q* of the quasihole:

$$\frac{q}{e} = \gamma \frac{l_{\rm B}^2}{A}.$$

We can extract Berry phase from ground states at different quasihole positions:

ED for system on disk in a Laughlin-like phase: Broadness of potential does not spoil the charge of the quasihole.

Moving quasiholes with light

Berry phase for moving the quasihole adiabatically on closed loop: $\gamma = \oint d\xi \langle \Psi(\xi) | \nabla_{\xi} | \Psi(\xi) \rangle$

Berry phase is related to the charge *q* of the quasihole:

$$\frac{q}{e} = \gamma \frac{l_{\rm B}^2}{A}.$$

We can extract Berry phase from ground states at different quasihole positions:

ED for system on disk in a Laughlin-like phase: Broadness of potential does not spoil the charge of the quasihole.

Moving quasiholes with light

Berry phase for moving the quasihole adiabatically on closed loop: $\gamma = \oint d\xi \langle \Psi(\xi) | \bigtriangledown_{\xi} | \Psi(\xi) \rangle$

Berry phase is related to the charge q of the quasihole:

 $\frac{q}{e} = \gamma \frac{l_{\rm B}^2}{A}.$

We can extract Berry phase from ground states at different quasihole positions:

ED for system on disk in a Laughlin-like phase: Broadness of potential does not spoil the charge of the quasihole. Or we can extract Berry phase from time evolution while the potential moves:

Discretized in 200 step. Error as a function of step duration. Phase error (red curve) is large.

<u>Summary</u>

Part I: Optical driving.

Areg Ghazaryan, Tobias Graß, Michael J. Gullans, Pouyan Ghaemi, and Mohammad Hafezi, Phys. Rev. Lett. 119, 247403 (2017)

- Synthetic bilayer: Interactions are potentially very different from interactions in real bilayers.
- Transition to exotic FQH phases:
 - non-Abelian Fibonacci phase at filling 2/3
 - Haldane-Rezayi phase at filling 1/2 ?

Part II: Optical excitations.

to appear on arXiv soon

- Light pulse with OAM produces (quasi)holes.
- Despite their broadness, laser beams can pin quasiholes.

Thank you!

